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ABSTRACT

This work deals with the longitudinal vibration and transverse vibration of a specific 1D peri-
odic framed structure, whose unit cells are interconnected beams. The associated dynamic be-
haviour will be investigated by the numerical Condensed Wave Finite Element method (CWFE)
and the analytical Homogenization method of Periodic Discrete Media (HPDM). Homogenized
models are deduced by the HPDM, while the numerical results obtained by CWFE serve as
the reference to validate these models. Dispersion curves are presented to evaluate the valid
frequency range of these models.
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1 INTRODUCTION

The framed materials are widely employed in various industries, such as aeronautics (lattice
beams), civil engineering (buildings), materials science (mechanics of foam and glass wool)
and biomechanics (vegetable tissue or bones). Numerous methods (numerical and analytical)
aiming to find their dynamic behaviors have been developed. Among the numerical methods,
the most widely used is the Wave Finite Element Method (WFEM). Based on Floquet-Bloch
theorem, WFEM employs the conventional finite element models of the unit cell to deduce the
dynamics of the whole structure [1, 2]. As for the analytical method, one frequently discussed
approach is the homogenization theory. In order to find an appropriate analytical continuous de-
scription for the periodic structures, several homogenization approaches have been developed,
such as material receptance method, asymptotic expansion method, and the homogenization of
periodic discrete media (HPDM) [3–5].

In this work, both analytical HPDM and numerical CWFE are employed to study a
periodic discrete framed structure. The principal objective of this work is to re-evaluate the
validity of the HPDM using the wave characteristics identified by CWFE.

2 TECHNIQUES AND RESULTS

The studied structure is a ’ladder’, which is formed by a large number of unbraced beams,
Figure 1. These identical beam unit cells follow the Euler-Bernoulli theory, and they are linked
by perfectly stiff and massless nodes.
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Fig. 1. (a) Examples of studied structures; (b) notation.

size can then induce the resonance of the soft component. This phenomenon which differs from diffraction leads to unusual
effective properties investigated in the pioneering work of Auriault and Bonnet in 1985 [1] (see also [2]) and observed
experimentally in [3,4]. In particular, the effective density is different from the real density and depends on the frequency.
The description of such composites at the macroscopic scale is a generalization of the Newtonian mechanics. This question
is frequently addressed with mass–spring models (such as the Maxwell–Rayleigh model cited in [5]) which are difficult to
realize in practice. The stratified composite studied by Auriault and Bonnet and the reticulated structure considered in this
paper are more realistic systems.

Indeed, in [6,7], it was shown that reticulated materials with only one constituent can also behave as locally resonant
materials. In that case, the stiffness contrast comes from the geometry of themicrostructure. Reticulatedmaterials aremade
up of interconnected beams or plates. Examples include materials of millimetric size such as foams, plants, bones, of metric
size such as the sandwich panels, stiffened plates and truss beams used in aerospace and marine structures, of decametric
size such as buildings. Since beams and plates are much stiffer in tension–compression than in bending, the propagation of
compressional waves with a long wavelength and the local bending modes of the elements can occur in the same frequency
range. The local resonance in bending of a reticulated material is used in [8] to attenuate vibrations over desired frequency
ranges.

In this paper, we investigate the consequences of the local resonance in bending on the dynamic behaviour of periodic
frame structures. Instead of considering wave propagation as in [6,7], emphasis is put on the modification of the features of
the longitudinal modes. For the first modes of a structure with a sufficiently large number of periods (or cells), deformations
occur on a length scale much greater than the size of a period. Therefore the homogenization method of periodic discrete
media (HPDM method) can be used to obtain a macroscopic description. This method, elaborated by Caillerie [9] has
been extended by a systematic use of scaling based on dimensional analysis [10,11] and applied to situations with local
resonance [6,7]. Itsmain advantages are that themacroscopic behaviour is derived rigorously from the properties of the basic
frame and that it provides an analytic formulation which enables to understand the role of each parameter. This method has
already given interesting results on the transverse dynamics of frame structures [11].

The framework of the study is described in Section 2 and the details of the HPDM method are given in Appendix B. Sec-
tion 3 presents the two possible macroscopic behaviours: without and with local resonance. In Section 4, the consequences
of the local resonance on the free and forced vibrations are analysed. These results are confirmed by finite element simula-
tions. Finally, Section 5 discusses the potential applications of this work. The differences between the idealized reticulated
structures and real buildings are examined and the important points for the design of new structures with prescribed prop-
erties are highlighted. Note that the demonstrations of some results about the harmonic vibration of Euler–Bernoulli beams
used in this article are gathered in Appendix A.

2. Framework of the study

2.1. Studied structures and kinematic descriptors

The studied structures are constituted by a pile of a large number N of identical unbraced frames called cells and made
of a floor supported by two walls (see Fig. 1). The walls and the floors are beams or plates which behave as Euler–Bernoulli
beams in out-of-plane motion. They are linked by perfectly stiff and massless nodes. The characteristics of the floors (j = f )
and the walls (j = w) are: `j length, aj thickness, h depth in the direction e3, Aj = ajh cross-section area, Ij = a3j h/12 second
moment of area in the direction e3, ⇢j density, Ej elastic modulus.

This paper deals with the harmonic vibrations of the structure at the unknown circular frequency ! of the longitudinal
modes. Therefore, every variable can be written in the following way: X(t) = <(X ei!t) where t is the time. Since the study
is conductedwithin the framework of the small strain theory and the linear elasticity, the time dependence can be simplified
and will be systematically omitted.

As explained in Appendix B, the HPDM method begins with the discretization of the dynamic balance. The study of the
momentum balance of the whole structure is exactly replaced by the study of the momentum balance of the nodes. Since

(a) Example (b) Notations

Figure 1. Studied structures [5]

2.1 HPDM

The HPDM is composed of two parts: discretization and homogenization. As the studied struc-
ture is made of interconnected beams, the dynamic balance of the whole structure can be ex-
pressed in a discrete form using the element balance and nodal balance. Thus, the kinematic
description of the structure can be described by the motions of the nodes. Then, the scale
separation being satisfied, the dynamic variables of neighbouring nodes can be connected by
Taylor’s Series, and the discrete dynamic variables at each node can be considered as specific
values of a continuous function. For more details, please refer to [3–5].

According to the HPDM, the homogenized models for the longitudinal vibration is:

Λω2V + 2EwAwV
′′ = 0 (1)

And the homogenized models for the transverse vibration is:

2E2
wIwI

K
U

′′′′′′ − (2EwIw + EwI)U
′′′′ − EwI

K
Λω2U

′′
+ Λω2U = 0 (2)
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Where V is the mean longitudinal displacement, U is the mean transverse displacement,
Λ is the linear mass of the cell, and K−1 = K−1w + K−1f is the shear stiffness of the cell, with
Kw = 24EwIw/l

2
w, Kf = 12EfIf/(lwlf );

2.2 CWFEM

The CWFEM is a combination of WFEM and mode reduction technique. Here, the fixed in-
terface component mode synthesis method, or the Craig-Bampton method, is chosen to reduce
mode order and speed up the calculation. Then, the method begins with establishing the motion
equation of the unit cell, where the mass and stiffness matrices M and K can be extracted from
conventional FE packages. After the reduction, the physical DOFs are then reformulated to a
reduced modal basis of modal DOFs. And the following process is the same as WFEM. More
details are shown in [6].

2.3 Dispersion curves

Here is an example structure, whose characteristics are listed in Table 1. To ensure the conver-
gence of the mesh, all the beams are discretized into 20 finite elements. Each unit cell contains
183 DOFs, among which 171 are internal DOFs. After the reduction, the first 20 fixed interface
modes are conserved.

lw (m) lf (m) aw (m) af (m) ρ (kg m−3) E (GPa) µ

3 3 0.1 0.1 7600 2e11 0.3

Table 1. Material Properties

By considering the propagative waves in positive-x direction, the dispersion relation
obtained by CWFEM is given in Figure 2. And the associated wave shape is plotted in Figure
3. According to the wave shapes, the first wave corresponds to the transverse vibration and
the second wave appears to be the longitudinal vibration. A third wave shows up at about
10Hz. This is an atypical gyration mode which can not be predicted by HPDM. Thus, the first
two modes are investigated and the comparison of dispersion curves obtained by CWFEM and
HPDM are illustrated in figure 4.

Figure 2. The dispersion relation from 0-20 Hz

3 CONCLUDING REMARKS

The wave propagation feature of the 1D framed structure is studied through the dispersion
relation obtained by both HPDM and CWFEM. Good agreement between the two results is an

3
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Figure 3. Wave shapes (∗) Undeformed unit cell (o)
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(b) The wave 2

Figure 4. Dispersion relations by CWFEM and HPDM

evidence that the homogenized model achieves a reasonable accuracy. And the valid frequency
range is limited in the first propagating zone.
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