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ABSTRACT 
 

It is known that, when the mechanical coupling between the components is weak, small 

imperfections in a periodic structure can induce vibration localization. Stochastic analysis of 

near-periodic coupled pendulums chain is discussed in this paper. Perfect periodicity of the 

system is disturbed by varying randomly the length of one of the pendulums which is considered 

as an uncertain parameter. Its randomness is modeled in a probabilistic framework by a random 

variable according to a given range of dispersion level. Stochastic effects on vibration 

localization in mistuned four coupled pendulums chain is investigated through statistical 

evaluations. To do so, the propagation of uncertainties is performed using the Latin Hypercube 

Sampling method. 
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1 INTRODUCTION 

Mistuning, or disorder, resulting from material defects, structural damage, manufacturing defaults, 

etc., breaks the perfect arrangement of periodic structures and alters significantly their dynamic 

behavior. The structure then becomes nearly periodic or called mistuned and vibration localization 

could occur under certain circumstances [1]. Zhu et al. [2] studied localization in randomly 

disordered coupled beams and proved that the wave propagation and localization can be altered 

by properly adjusting the structural parameters. Recently, Malaji et al. [3] investigated the effect 

of mistuning on vibration localization in two coupled pendulums chain. The main purpose of the 

present study is to investigate the stochastic effects of uncertain mistuning on vibration 

localization in a coupled pendulums chain.   

2 MODEL 

The scheme of N coupled pendulums chain is illustrated in figure 1. The pendulums have same 

mass m, torsional stiffness kr and proportional damping constant c and are weakly coupled by 

translational springs kt . An external base excitation xg is applied to the system. 

 
 

Figure 1. Periodic coupled pendulums chain. 

 

The equation of motion of the n
th
 pendulum is written as follows: 

 2 2 2
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 (1) 

To disturb the periodicity of the system, one pendulum is assumed to have slightly different length 

from the others. This mistuning is quantified by a length ratio n  between the n
th
 pendulum 

length and the nominal length. 

For simplification, dimensionless variables are defined as follows: 
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where   is the damping factor,   the coupling factor and ² 1j   . Eqs. (1) and (2) lead to: 

   2 2 2 2

1 11 2 1...n n n n n n nj f n N                  (3) 

This system of equations is solved for each angular frequency of excitation  . 

 
 

3 NUMERICAL RESULTS 

Let’s consider a chain of four weakly coupled pendulums with 0.01  , 0.005  , 1f  .  
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If the pendulum chain is perfectly periodic, the dimensionless eigenfrequencies are Ω1=1.001, 

Ω2=1.003, Ω3=1.007, Ω4=1.009 and conformity occurs between the amplitude pairs (Θ1, Θ4) and 

(Θ2, Θ3) reflecting the symmetry of the chain. This symmetry is broken when 2 1.01   

( 1 3 4 1     ), as shown in figure 2.a. The dimensionless eigenfrequencies become 

Ω1=0.994, Ω2=1.003, Ω3=1.006, Ω4=1.008 and an amplitude mistuning occurs. The amplitude of 

the 2
nd

 pendulum response is the highest with Θ2max= 128.18. 

 

 
 

Figure 2. a. Dimensionless amplitudes for 2 1.01  , b. Variation of maximal dimensionless 

amplitudes due to variation of 2  from 0.9 to 1.1. 

 

Small variation of 2 from 0.9 to 1.1 causes significant variation of maximal amplitudes as shown 

in Figure 2.b. The difference ΔΘmax 
between higher maximal amplitude and lower one is highest 

at 2 1.005   ( ΔΘmax = 59.09)  between Θ2max and Θ1max. The symmetry between Θ2 and Θ3 is 

more disturbed than the symmetry between Θ1 and Θ4. 

For more realistic representation of imperfection, we suppose that 2  is an uncertain parameter 

which varies according to: 

 2 0 1     (4) 

where ξ is a Gaussian random variable, 0 1   and δ is the dispersion value. 

The Latin Hypercube Sampling method is used with 1000 samples. The analysis of the trends in 

the output data (eigenfrequencies and amplitudes) is achieved by statistical evaluations: envelope 

(extreme statistics), dispersion (standard deviation / mean), skewness γ (distribution asymmetry) 

and kurtosis κ (heaviness of tail of the distribution). 

 

 
 

Figure 3. a. Dispersion, b. skewness and c. kurtosis of the stochastic dimensionless 

eigenfrequencies for 0 0.05  . 

 

Figure 3 shows that the variation of Ω 1 and Ω 4 is much more important than the variation of Ω2 

and Ω3. This is illustrated through increasing dispersions (Figure 3.a).  Ω2 and Ω3 distributions are 
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fairly symmetrical (-0.5 ˂ γ ˂ -0.5, Figure 3.b). Nevertheless,  Ω1 and Ω4 are highly skewed with 

asymmetrical distributions (γ ˂ -1 or γ ˃ 1) which are heavier than those of Ω2 and Ω3 (higher 

kurtosis values for  Ω1 and Ω 4, Figure 3.c). 

The evolution of maximal amplitude with respect to δ is illustrated in figure 4. Higher dispersion 

is obtained for Θ2max as shown in Figure 4.a. Smaller and nearly similar dispersions are obtained 

for Θ1max and Θ3max since 1
st
 and 3

rd
 pendulums are coupled to the disturbed one. Smallest 

dispersion is obtained for Θ4max since the 4
th
 pendulum is not directly coupled to the 2

nd
 one. 

Maximal vibration localization is achieved for δm = 2.45% (Θ2max=130.30) and remains constant 

up to δ = 5%. At δ = 3.3%, dispersion of Θ2 reaches it maximum (24.44%) and decreases beyond. 

Up to δ = 3.3%, the Θ3max distribution has heaviest (highest κ, Figure 4.c) long tail to the left (γ ˂ 

0, Figure 4.b), meaning that Θ3max has the most tendency to decrease. 

 

 
 

Figure 4. a. Dispersion, b. skewness and c. kurtosis of the stochastic maximal dimensionless 

amplitudes for 0 0.05  . 

 

4 CONCLUDING REMARKS 

Stochastic analysis of uncertain mistuning effects on vibration localization in near-periodic 

coupled pendulums chain was performed in this paper. Vibration localization reaches its 

maximum for a given dispersion level. Future work will consist in generalizing the proposed 

concept to Mdof near-periodic structures in order to extract the benefits of random imperfections 

in term of vibration localization. This denotes an interesting challenge for energy harvesting in 

presence of uncertainty, meriting particular attention. 
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