
MEDYNA 2017: 2nd Euro-Mediterranean Conference 25-27 Apr 2017 

on Structural Dynamics and Vibroacoustics   Sevilla (Spain) 

 

 

  

 

 
 

 

DYNAMICAL REGIMES FOR A TIME-CORRELATED 

RANDOMLY EXCITED BOUNCING BALL MODEL 

J. Perret-Liaudet1, C. Zouabi2 and J. Scheibert1 

 
1Laboratoire de Tribologie et Dynamique des Systèmes, UMR 5513 

École centrale de Lyon, member of the Université de Lyon, F69134 Écully, FRANCE 

Email: joel.perret-liaudet@ec-lyon.fr, julien.scheibert@ec-lyon.fr 

 
2CESI - Lyon, 19 Avenue Guy de Collongue - F69130 Écully, FRANCE 

Email: czouabi@cesi.fr 
 

 

ABSTRACT 
 

The popular bouncing ball model, which consists in a ball submitted to the gravitational field and 

bouncing vertically on a vibrating plate with inelastic impacts, is under study in this paper. 

Contrary of most of studies witch assume a harmonic vertical motion of the plate, one considers 

random excitations of the ball induced by the plate motion. More precisely, we consider the dynamic 

behaviour of a revisited stochastic version of the bouncing ball model, by introducing the table 

displacement as a continuous time Gaussian random process with tunable correlation time. The 

memory effect of the excitation is then analysed, by investigating the dynamic behaviour through 

numerous numerical simulations. One shows that the dynamic behaviour is not only governed by 

the restitution coefficient at impacts and the dimensionless excitation amplitude level, but also by 

the correlation time of the excitation process. One highlights the relevant parameter that 

distinguishes the well-differentiated dynamic regimes. Quickly says, this dimensionless parameter 

depends for the essential from the bandwidth of the excitation signal. 
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1 INTRODUCTION 

The popular bouncing ball (BB) model, which consists in a ball submitted to the 

gravitational field and bouncing vertically on a vibrating plate with inelastic impacts, has been 

widely studied in the last decades. This is due to both its simplicity and the amazing richness of its 

dynamics, from harmonic to chaotic, through subharmonic and quasi-periodic responses. It is now 

one of the paradigms for nonlinear dynamics and chaos (see, e.g. [1, 2] for BB in textbooks). Most 

of the studies achieved to date consider harmonic vertical motion of the plate. On the contrary, few 

of them include random vibrations of the plate, in spite of its undeniable relevance. Moreover, the 

excitation induced by the plate motion at successive bounces is generally assumed to be a discrete 

Markovian memoryless stochastic process. However, the real plate motions are always 

characterized by a finite auto-correlation time 𝑡𝑐𝑜𝑟𝑟 below which the signal keeps memory of its 

previous values. The Markovian assumption of independent successive impacts corresponds to the 

fact that the ballistic flight time of the ball between two successive bounces is much larger than 

𝑡𝑐𝑜𝑟𝑟. This is the case with the so-called Chirikov conditions [3]. Conversely, for two bounces 

separated by a short flight time, the two relevant plate velocities can be strongly correlated. Thus, 

in regimes in which short flight times are dominant, the standard Markovian approach is expected 

to fail to capture the BB model dynamics.  

In this context, the main purpose of this study is to characterize the BB model dynamics 

with stochastic excitation, when memory effects cannot be neglected. 

2 THE REVISITED BOUNCING BALL MODEL 

Consider the popular BB model (see Figure 1) consisting on a point-like ball of finite mass bouncing 

vertically under the action of gravity, 𝑔, on an infinitely massive vibrating plate, the originality of 

our model is to introduce, for the vibrating plate, a correlated stochastic motion, ℎ(𝑡), with tunable 

correlation time, 𝑡𝑐𝑜𝑟𝑟. To this end, ℎ(𝑡) is obtained from an uncorrelated Gaussian white noise 

𝜓(𝑡), filtered by a second-order filter as 

 

ℎ̈ + 2𝜁Ωℎ̇ + Ω2ℎ = 𝜓(𝑡) (1) 

 

with Ω being the center frequency of the filter and 𝜁 its damping coefficient. Note that 𝜁 is related 

to the frequency contents of the signal because the bandwidth of its power spectrum density (PSD), 

𝑆ℎℎ(ω) is equal to 2𝜁Ω. The autocorrelation function < ℎ(𝑡)ℎ(𝑡 + 𝜏) > of ℎ is equal to 

𝜎ℎ
2 exp(−𝜁Ω|𝜏|) 𝑓(𝜏) with 𝑓 a periodic function and 𝜎ℎ the standard deviation of ℎ, so the 

correlation time can be defined as 𝑡𝑐𝑜𝑟𝑟 = 1/𝜁Ω . To avoid infinite energy in the acceleration signal 

the displacement is further filtered by a first-order low-pass filter with a cutoff frequency higher 

than Ω. Typical simulated PSDs are shown in Figure 2 for the two cases, narrow and broadband. 

  

Figure 1. Sketch of the bouncing ball (BB) model. 
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Figure 2. Typical realizations of the dimensionless plate time-displacement and its power spectral 

densities (PSD): narrow and broadband cases.  

 

Now, for any generated excitation signal, we then solve the bouncing ball problem by 

calculating the values of the post impact velocity, 𝑣𝑛, and instant, 𝑡𝑛, of the all-successive impacts. 

In practice, we solve the following equations: 

𝑡𝑛+1 = 𝑡𝑛 + 𝜃𝑛 (2) 

𝑣𝑛+1 = −𝑒(𝑣𝑛 − 𝑔𝜃𝑛) + (1 + 𝑒)𝑤𝑛+1 (3) 

with 𝑒 the restitution coefficient introduced to take into account the partially inelastic impact 

characteristic, 𝑤𝑛 the plate velocity at impact, and 𝜃𝑛 the flight time obtained from the following 

equation: 

−
1

2
𝑔𝜃𝑛

2 + 𝑣𝑛𝜃𝑛 + ℎ𝑛 − ℎ𝑛+1 = 0 (4) 

In fact, Equations (2) and (3) define the classical Poincaré map for the BB model. A 

dimensional analysis shows that the system is governed only by three dimensionless parameters, 

i.e. the restitution coefficient 𝑒, the reduced plate acceleration defined by Λ = 𝜎𝑤
2 /𝑔𝜎ℎ and the 

dimensionless correlation time 𝜏𝑐𝑜𝑟𝑟 = Ω𝑡𝑐𝑜𝑟𝑟. On this basis, we have performed simulations for a 

large number of values of this triplet [4]. 

3 RESULTS 

Typical probability density functions (pdf) of the dimensionless take-off velocity 𝑉𝑛 = 𝑣𝑛/𝜎𝑤 are 

shown in Figure 3. Wood and Byrne have studied the case of a completely uncorrelated Markovian 

excitation [5], and their results (velocity quoted 𝑉𝑊𝐵) are used as a reference to highlight the 

differences brought by our improved model which includes the correlation in the excitation. As we 

can see, memory effects become negligible when individual flight times are larger than the 

correlation time. This case is favoured for large excitations Λ and/or short correlation time 𝜏𝑐𝑜𝑟𝑟.   
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Figure 3. Typical pdf of the dimensionless take-off velocity for selected Λ and 𝜏𝑐𝑜𝑟𝑟, with the 

example of 𝑒 = 0.8. Solid lines correspond to the Wood and Byrne results. 

 

A detailed analysis [6] shows that the relevant parameter consists on the ratio of the Markovian 

mean flight time of the ball and the mean time between successive peaks in the plate motion. This 

dimensionless parameter depends on the bandwidth of the excitation signal. When the parameter is 

large, the Markovian approach is appropriate; but for low levels, memory effects become not 

negligible leading to a significant decrease of jump durations; and finally at smallest values of the 

ratio, chattering occurs. 
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