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ABSTRACT

This short paper considers the control of a helicopter gearbox semi-active suspension. As the
future generation of helicopters will include variable engine RPM during flight, it is interesting
to consider implementing control on their suspension systems in order to always optimally filter
the main disturbance frequency. Here, a semi-active suspension based on the DAVI principle
is developed, simulated and tested with its control algorithm based on Bayesian optimization.
This control method based on the Bayes theorem is a trial/error algorithm allows to significantly
reduce the number of evaluations of the real objective function for a given set of parameters θ.
Thus the system is capable to fastly determine its own optimal set of parameters to maximize
the objective function. The objective is to prove experimentally the ability of the Bayesian
optimization to lead the learning behavior of a semi-active resonant suspension.
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Figure 1: semi active DAVI principle adapted to helicopter, mmgb: main gearbox and rotor, mf :
fuselage, mb: flapping mass.

1 INTRODUCTION

Fuselage vibrations are a major problem in the design of helicopters. This paper will focus
on the development of a new active hybrid vibration absorber which reduces the effects of the
cyclic loads (nΩ harmonics) on the helicopter structure due to the main rotor.

2 THE SEMI-ACTIVE DAVI

In 1976, Flannelly [1] presents an anti-resonant vibration absorber called DAVI which uses
a rigid arm carrying a flapping mass. The inertia of the bobweight mass generates an anti-
resonance at the characteristical frequency ωc depending on some parameters : dynamic ampli-
fication, overall stiffness and flapping mass. Airbus Helicopters company developed during the
1990’s the SARIB c© suspension, a DAVI suspension integrated in the helicopter between the
MGB and the structure tuned to be as close as possible to the bΩ frequency (b number of blades
and Ω the rotor speed).

With the arrival of variable engine RPM during flight, it is relevant to integrate some
actuation in a DAVI system in order to be able ”track” the bΩ frequency and adapt the steady
state parameters of the suspension to the varying frequency of the disturbing input force. One
can control the DAVI dynamic amplification ratio by modifying the position of the bobweight
mass on its flapping arm as in figure 1 where mf represents the helicopter structure, mb is the
flapping mass, mmgb the main gearbox and rotor and k is the overall suspension stiffness. The
dynamic amplification ratio λ is defined as c/a and has a direct influence on the anti-resonance
frequency ωc :

ω2
c =

k

−λ(λ− 1)mb

(1)

Figure 2 shows the transmissibility H of the DAVI suspension for different values of λ. It is
clearly visible that a suitable control of the variable c (position of the flapping mass) can modify
in flight the anti-resonance frequency.

3 THE BAYESIAN OPTIMIZATION

The Bayesian optimization [2] [3] is used for computing the maximum of expensive cost func-
tions. It is applicable when the estimation of the objective function for a particular case of xi
is costly and possibly noisy. The ability of the algorithm to significantly reduce the number
of function evaluations before reaching the optimum value is due to the incorporation of the
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Figure 2: Transmissibility H(f) of the DAVI suspension for different values of λ.

prior belief. This prior knowledge is used to determine the new input vector xi which will be
evaluated by making a trade off between exploitation (use of prior data) and exploration of the
search space. At each cost function evaluation, the algorithm computes an estimation of the
function f(x) for the complete search space Π (x ∈ Π).

From the prior knowledge of the cost function is computed the posterior distribution
which represents the updated beliefs about f(x). Then, the Bayesian optimization uses an
acquisition function to determine the next input vector xi+1 and measure the process response
f(xi+1).

The objective here is to adapt the dynamic amplification ratio λ i.e. the position c of the
bobweight mass on the flapping arm for every solicitation frequency ω0 ∈ [ωc(cmax);ωc(cmin)].
The input parameter x represents here the position c of the bobweight mass and the cost function
f(x) is mostly characterized by the acceleration level of the fuselage.

The strong assumption of the Bayesian optimization is that it is possible to consider the
function f(x) as a GP (Gaussian Process). For every input vector x, the GP will return the mean
m and the covariance k of a normal distribution over the possible values of f(x) as it follows :

f(x) ∼ GP(m(x), k(x, x′)) (2)

In the Bayesian method, the choice of the covariance function is very important as it
determines the smoothness properties of the estimation of f(x). This smoothness is generally
controlled by one or more hyperparameters θ. A wide variety of covariance functions has been
investigated in litterature, as in [4] we propose to use the Matern 5/2 kernel. To determine
the hyperparameters of this statistical model, the ARD (Automatic Relevance Determination)
method has been applied. The table 1 summarizes the main steps of the Bayesian optimization
with Auto Relevance Determination method described just before.

Bayesian optimization of f(x)
While optimize do
1 Prior knowledge available D1:i = {x1:i, f1:i}
2 Auto Relevance Determination of θopt(i) using gradient method
3 Computation of µ and σ2

4 Computation of the acquisition function EI(x) on the search space Π
5 Maximization of EI(x) and so determination of xi+1

6 Evaluation f(xi+1)
7 i = i+ 1 and go to step 1

Table 1: Overview of the Bayesian optimization with ARD.
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Figure 3: Test setup scheme.

4 EXPERIMENTS

As explained previously, the system we control here with the Bayesian optimization is the semi-
active SARIB c© from Airbus Helicopters. The test setup represents an isolated MGB strut linked
to a semi-active DAVI bobweight arm. The figure 3 represents a diagram of the test bench (no
pictures allowed due to Airbus confidentiality policy), one can notice that the flapper arm is
linked by a fitting to a mass mf representing the helicopter structure. In order to keep all
movements in a plane, a mechanical parallelogram is added to the experimental set-up.

Three different learning sequences have been used to teach the program. We define a
learning sequence as the order of appearance of every frequency ω within the antiresonance
bandwidth of the semi-active DAVI [ωc(cmax);ωc(cmin)].
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Figure 4: Increasing sequence - suspension transmissibility.

The real optimal positions cref (ω) ∀ω ∈ Π are also computed to set a reference vector
d0. As a result (see 4 and 5), the Bayesian optimization always finds a solution acceptable for
the mass position giving a transmissibility around 0.45 for the worst results and 0.1 for the best
ones. In addition to the Bayesian optimization, it has been added a learning method to keep in a
database the ”good” positions tested for each frequency. The objective is to reduce the number
of iterations necessary to the algorithm to find the optimal position.
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Figure 5: Increasing sequence - mass position.

5 CONCLUSION AND PROSPECTS

The main difficulties encountered during the development of the control algorithm were to deal
with the resonant behavior of the DAVI. Controlling a dynamic system near its anti-resonance
or resonance frequency implies fast and unstable phase changes which makes harder having
a clean and fine tuning. The fact that this optimization technique is based on a stochastic,
not deterministic model which is updated using prior knowledge on every measurement made,
presents a strong advantage in comparison to other semi-active control methods. There is no
need of a complex mathematical model of the system or prior identification.

Good results were achieved in terms of vibration isolation : a suspension transmissibility
going from 0.1 to 0.41 and no absurd final mass position c were observed in spite of the system
noise. The learning sequence order demonstrated to have a limited impact on the final results.

As a conclusion, control adaptivity, learning methods and auto-tuning of control para-
meters even without particular mathematical model of the system or prior asumptions are the
current keys for the future evolutions of the dynamics control field.
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