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ABSTRACT

A three dimensional viscoelastic model at finite strain representing nonfactorizable behaviour
of rubber like materials is proposed. The model is based upon the internal state variables
approach within the framework of rational thermodynamics such that the second principle of
thermodynamics is satisfied. Motivated by experimental and rheological results, the nonfac-
torizable aspect of the behavior was introduced via strain dependent relaxation times which
leads to a reduced time with a strain shift function. The identification of the models parame-
ters and its capacity to predict the nonfactorizable behaviour of rubber like materials with the
multi-integral viscoelastic model of Pipkin is addressed.
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1 INTRODUCTION

It is well known that rubber-like materials exhibit nonlinear viscoelastic behavior over a wide
range of strain and strain rates confronted in several engineering applications such as civil en-
gineering, automotive and aerospace industries. Further, the time dependent properties of these
materials, such as shear relaxation modulus and creep compliance, are, in general, functions of
the history of the strain or the stress [1]. Therefore, in a wide range of strain a linear viscoelas-
ticity theory is no longer applicable for such material. Hence, new constitutive equations are
required to fully depict the behavior of rubber-like. In this work we shall develop a nonlinear
model at finite strain for nonfactorizable viscoelastic materials within the framework of rational
thermodynamics and the approach of internal state variables, see [2], [3] and [4] taking into
account the dependence of the time dependent functions upon the state of the strain. The identi-
fication of several functions in the model to the multi-integral model of Pipkin [5] is performed
with Matlab software. This paper is organized as follows: in section 2 the mechanical frame-
work and the model are recalled. In section 3 a brief review of the model by [5] is presented
and the results of the identification are highlighted.

2 MECHANICAL FRAMEWORK AND CONSTITUTIVE EQUATIONS

Consider a viscoelastic material with reference placement Ω0 in the reference configuration C0.
It occupies at the time t the placement Ω in the deformed configuration Ct. Let ϕ denote a
macroscopic motion between the two configurations, which maps any point X in the reference
configuration C0 to the point x in the deformed configuration. Let F (X, t) = ∂x/∂X be the
deformation gradient tensor. Likewise, let J = det (F ) be the jacobian of the deformation
gradient tensor. From the deformation gradient F (X, t), the right and left Cauchy-Green strain
tensors C = F tF and B = FF t are obtained. The formulation of the constitutive equations
in the nonlinear range of behavior is based upon the decomposition of the deformation gradient
tensor F (X, t) into volumetric and isochoric parts such that:

F̄ = J−1/3F where det
(
F̄
)

= 1 (1)

in which F̄ is the isochoric part of the deformation gradient tensor, the right and left Cauchy-
Green strain tensors associated with it reads:

C̄ = F̄ tF̄ = J−2/3C, B̄ = F̄ F̄ t = J−2/3B (2)

The free energy density according to [2] is expressed as follows:

Ψ
(
C̄, Q

)
= U0 (J) + Ψ̄0

(
C̄
)
− 1

2
Q : C̄ + ΨI (Q) (3)

in which Q is a second order tensor internal variable akin to the second Piola-Kirchhoff stress
tensor, its evolution law is expressed as follow:

∂Q

∂ξ
+

1

τ
Q =

γ

τ
DEV

[
2
∂Ψ0

(
C̄
)

∂C̄

]
with ξ (t) =

∫ t

0

dt′

a
(
C̄
) (4)

in which DEV (•) = (•) − 1
3

[C : (•)]C−1 denotes the deviator operator in the reference con-
figuration. γ and τ are the viscoelastic parameter and the relaxation time of the Prony series
respectively, in relation 4 ξ denotes the reduced time which is an increasing function of real
time t and a(C̄) is a positive function of the left Cauchy-Green strain tensor called a strain-shift
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function. Application of the Clausius-Duhem inequality and the resolution of the evolution
equation 4 along with the form of the free energy density of equation 3 lead to the expression
of the second Piola-Kirchhoff stress tensor.

S = J−2/3
∫ ξ

0

G (ξ − ξ′)
∂

∂ξ′
DEV

(
2
∂Ψ0

(
C̄
)

∂C̄

)
dξ′ + JpC−1 (5)

3 IDENTIFICATION OF THE PIPKIN MODEL

3.1 Pipkin isotropic model

Pipkin [5] proposed a third order development of the tensorial response function Q for an
isotropic incompressible material. The principle of material indifference requires that the Cauchy
stress tensor takes the following form:

σ = RQRt + pI (6)

R is the rotation tensor obtained from the polar decomposition of the transformation gradient
tensor F and p is the indeterminate parameter due to incompressibility. The third functional
development of Q reads

Q (t) =
∫ t
0
r1 (t− t′)Ė (t′) dt′ +

∫ t
0

∫ t
0
r2(t− t′, t− t′′)Ė (t′) Ė (t′′) dt′ dt′′+∫ t

0

∫ t
0

∫ t
0
r3 (t− t′, t− t′′, t− t′′′) tr

[
Ė (t′) Ė (t′′)

]
Ė (t′′′) dt′dt′′dt′′′+∫ t

0

∫ t
0

∫ t
0
r4 (t− t′, t− t′′, t− t′′′) Ė (t′) Ė (t′′) Ė (t′′′) dt′dt′′dt′′′

(7)

ri i = 1...4 are the relaxation kernels expressed by a decaying exponential functions and Ė (t)
is the time derivative of the Green-Lagrange deformation tensor E = 1/2 (C − I).

3.2 Identification of the model’s functions

The free energy density Ψ0, the viscoelastic kernel G(ξ) and the reduced time ξ(t) of relation
5 are identified separately. To this end data in pure shear and simple extension were generated
following relations 6 and 7. Equilibrium tests of simple extension and pure shear are used in
the identification of Ψ0, relaxation tests with small level of strain in pure shear are used in the
identification of G(ξ) and monotonic tests of simple extension are used in the identification of
ξ(t) and then the whole identification procedure is validated by predicting the response of the
model to a monotonic test of pure shear. Each identification procedure turns out to a least square
minimization problem. The results of this identification are plotted in figure 1 in terms of the
hyperelastic response and in figure 2 in terms of the reduced time function and the predicted
response of the model in pure shear for two different strain rates: ε̇ = 100% and ε̇ = 200%.

4 CONCLUDING REMARKS

A nonlinear viscoelastic model at finite strain to describe nonfactorizable behavior of rubber
like materials has been proposed. The model is formulated using the decomposition of the
deformation gradient tensor which makes it applicable to both compressible and incompressible
materials. The identification of the model’s functions to the multi-integral isotropic model of
Pipkin [5] is highlighted and a significant potential of the model to track the response of this
model is obtained.
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(a) Piola-Kirchhoff stress versus principle stretch for
simple extension
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(b) Piola-Kirchhoff stress versus principle stretch for
pure shear

Figure 1. Equilibrium response for the Pipkin model and the Mooney-Rivlin model [6]
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(a) Reduced time function a(C̄) versus principle
stretch for two strain rates
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(b) Cauchy stress in simple shear versus principle
stretch for two strain rates

Figure 2. Identification results: Reduced time function and Cauchy stress
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