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ABSTRACT

This work aims at simulating the time response of a structure damped by viscoelastic materials.
The structure is discretised by finite elements and a 4-parameter fractional derivative model is
used to describe the frequency-dependency of the mechanical properties of the viscoelastic ma-
terial. The proposed approach combines a classical Newmark time-integration scheme to solve
the semi-discretised equation of motion with a diffusive representation of fractional derivatives.
This approach is applied to a finite element model, and validated on a single degree-of-freedom
system for which an analytical solution can be derived.
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1 INTRODUCTION

The importance of fractional calculus for modeling viscoelastic material behavior has been
recognized by the mechanical scientific community since the pioneering work of Bagley and
Torvik [1]. The merits of using fractional differential operator lie in the fact that few parameters
are needed to accurately describe the constitutive law of damping materials and the resulting
model can be easily fitted to experimental data over a broad range of frequencies. While the use
of such models is quite straightforward in the frequency domain, some difficulties arise from
their application in the time-domain, due to the presence of fractional derivatives.
The resolution methods are classically either based on time discretization of the fractional dy-
namics (see e.g. [2]), or on diffusive representations (cf. [3]). For large scale systems, the
first method proves memory consuming because it is necessary to store the whole displacement
history of the system due to the non-local character of the fractional derivatives. The second
method, based on diffusive realizations of fractional derivatives, is numerically more efficient
because it has no hereditary behavior, thus avoiding the storage of the solution from all past
time steps. The diffusive representation, coupled with a Newmark integration scheme, has al-
ready been developed and validated for a fractionally damped single-of-freedom system [4]. In
[5], an extension of this approach to viscoelastic structures using FE modeling and a fractional
derivative model has been presented but not tested. The purpose of this work is to implement
the method described in [5] and to apply it to a structure with viscoelastic damping. The ap-
proach is validated on a single degree-of-freedom system for which an analytical solution can
be derived.

2 FINITE ELEMENT VISCOELASTIC PROBLEM

We consider a structure composed of elastic and viscoelastic materials. A fractional derivative
model is identified to described the frequency-dependency of the complex shear and the bulk
moduli (resp. Ĝ and K̂) of the viscoelastic material:

Ĝ(ω) = G0 +
(G∞ −G0)(iωτG)αG

1 + (iωτG)αG
and K̂(ω) = K0 +

(K∞ −K0)(iωτK)αK

1 + (iωτK)αK
(1)

where G0 and K0 are relaxed moduli, G∞ and K∞ are unrelaxed moduli satisfying G∞ >
G0 and K∞ > K0, τG > 0 and τK > 0 are relaxation times and αG and αK are fractional
coefficients comprised bewteen 0 and 1. Figure 1 shows that the fractional derivative model
enables a good representation of the frequency-dependency both the shear and the bulk moduli
over a wide frequency range with few parameters.
The finite element discretization of the equation of motion leads to the following matrix system:[

Ke + iωĥG(ω)KG
v + iωĥK(ω)KK

v − ω2M
]
Û = F̂ (2)

where Ke = Kep + G0

(
KG
v

)
0
+ K0

(
KK
v

)
0
, KG

v = (G∞ − G0)
(
KG
v

)
0
, and KK

v = (K∞ −
K0)

(
KK
v

)
0
. The matrix Kep is the stiffness matrix associated to the volume of elastic part of

the model,M is the mass matrix of the whole system, and the stiffness matrix associated to the
volume of viscoelastic material (computed with unitary moduli), is separated into a spheric part(
KK
v

)
0

and a deviatoric part
(
KG
v

)
0
. According to Equation (1), the functions ĥG(ω) and ĥK(ω)

are expressed as:

ĥG(ω) =
ταG
G

(iω)1−αG [1 + (iωτG)αG ]
and ĥK(ω) =

ταK
K

(iω)1−αK [1 + (iωτK)αK ]
(3)
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Figure 1: Master curves of the complex shear and bulk moduli of Deltane 350 (Paulstra R©)
measured (points) by DMA and fitted (lines) by a fractional derivative model (left). Real part
of the complex Poisson ratio from identified models (right).

3 COUPLED NEWMARK-DIFFUSIVE SCHEME

Equation (2) can be rewritten in the time domain as follows:

MÜ+
(
hG(t) ?K

G
v + hK(t) ?K

K
v

)
U̇+KeU = F(t) (4)

where the symbol ? represents a convolution product.
Following e.g. [3, 5], letting V = U̇, the functions hG(t) and hK(t) will be realized by a
standard diffusive representation of the form:

∂ϕ(ξ, t)

∂t
= −ξϕ(ξ, t) +V(t), with ϕ(ξ, 0) = 0 (5)

observed through the continuous superposition:

(hj ?V)(t) =

∫ ∞
0

µj(ξ)ϕ(ξ, t)dξ with j = G,K (6)

This exact diffusive representation can be approximated as follows:∫ ∞
0

µj(ξ)ϕ(ξ, t)dξ ≈
N∑
n=1

µjnϕ(ξn, t) with j = G,K (7)

where N is the number of approximation nodes, ξn a sequence of angular frequencies in the
frequency range of interest and µGn and µKn are the corresponding optimal weights computed by
minimising the respective functions CG(µG) and CK(µK) defined as [4]:

Cj(µj) =
L∑
l=1

∣∣∣∣∣
N∑
n=1

µjn
iωl + ξn

− 1

(iωl)1−αj

∣∣∣∣∣
2

with j = G,K (8)
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where ωl are angular frequencies and L >> N .
This diffusive representation is integrated into a Newmark integration scheme, by considering
the functions ϕn(ξn) := ϕ(ξn, t) as internal variables updated at each time steps. More details
on the time integration scheme have been presented in [5].

4 ANALYTICAL SOLUTION FOR A SINGLE-DEGREE-OF-FREEDOM SYSTEM

The equation of motion for a single-degree-of-freedom system is:(
ke +

(iωτ)α

1 + (iωτ)α
kv − ω2m

)
û = f̂ , (9)

and can be rewritten in the time domain as:[
mτα(Dt)

2+α +m(Dt)
2 + (ke + kv)τα(Dt)

α + ke
]
u(t) = [1 + τα(Dt)

α] f(t) (10)

where (Dt)
β represents the time derivative of order β (integer or fractional), and α = p/q, with

p and q integers satisfying p/q ∈ [0, 1].
To analytically solve this equation, the exact solution is expressed in terms of fractional power
series:

u(t) =
∞∑
n=0

unt
n
q (11)

where the coefficients un are calculated from initial conditions and recurrence relationships.

5 CONCLUSION

The coupled Newmark-diffusive scheme described in this paper will be used to compute the
time response of a viscoelastically damped structure, modelled by 3D finite elements. Valida-
tion of the proposed approach will be carried out on the single-degree-of-freedom system, by
comparing the analytical solution with that obtained by the proposed approach.
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