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ABSTRACT

The predictive capabilities of some integral-based finite strain viscoelastic models under the
time-strain seperability assumption have been investigated through experimental data for mono-
tonic, relaxation and dynamic shear loads, in time and frequency domains. This survey is
instigated by experimental observations on three vulcanized rubber material intended for an
engineering damping application. Models under consideration are Christensen, Fosdick & Yu,
a variant of BKZ model and the Simo model. In the time domain, for each test case and for each
model, the nominal stress is hence compared to experimental data, and the predictive capabil-
ities are then examined with respect to three polynomial forms hyperelastic potentials. In the
frequency domain, the predictive capabilities have been analysed with respect to the frequency
and predeformation effects.
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1 INTRODUCTION

Elastomeric compounds are widely used in industry for their mechanical properties particularly
their damping capabilities e.g tires, shock-absorbing bushes, construction industry, aerospace
applications... To design industrial compounds efficiently, it is of major importance to be able
to predict the impact of the nonlinearity effects on the products, and estimating the damping
capability is a primary feature to be considered in many engineering applications. While many
contributions investigated either the purely elastic phenomena for elastomers at large deforma-
tions [1] or the viscoelastic phenomenon [2], the attention is here focused on the hysteritic time
dependent part of the response.
The objective of the current work is the analysis of the predictive capabilities of some heridi-
tary integral-based constitutive models in time and frequency domains, under the separability
assumption [3][4]. From an historically point of view, the constitutive theory of finite lin-
ear viscoelasticity [5] have been of a major contribution and is founded on an extension of the
Boltzmann superposition principle to finite strain. The stress quantity is decomposed to an equi-
librium part corresponding to the stress response at highly slow rate, and an overstress quantity
expressed as an heriditary integral including a measure of material’s memory through relax-
ation functions. Based on experimental observations, the time-strain separability or factora-
bility assumption [4] is frequently introduced in the formulation of finite strain viscoelasticity
constitutive models and afford a large theoretical simplicity.

2 MODELS UNDER CONSIDERATION

In the present work, some of major contributions finite strain viscoelastic models involving
heriditary integral have been considered under the seperability assumption, chosen so as to not
require a special identification procedure. All parameters have been identified using Abaqus
Evaluate Module. The models under consideration are: Christensen [6], Fosdick & Yu [7], a
variant of BKZ [8] and Simo Model [9]:

σCh = − pI+ 2B
∂W

∂B
+ FG0

∫ t

0
g1(t− s)

∂E(s)

∂s
dsFT (1a)

σFY = − pI+ 2B
∂W

∂B
+G0

∫ t

0
g1(t− s)

∂Et(s)

∂s
ds (1b)

σBKZ = − pI+ 2B
∂W

∂B
− 2FG0

∫ t

0
g1(t− s)

∂C−1

∂s
dsFT (1c)

σSi = − pI+ 2B
∂W

∂B

1

g∞
+

dev

[∫ t

0

∂g1(s)

∂s
F−1t (t− s) 2

g∞
B(t− s)∂W

∂B
F−Tt (t− s) ds

] (1d)

where F = ∂x
∂X

is the deformation gradient. The right and left Cauchy-Green strain tensor
are consecutively C = FTF and B = FFT . The Green-Saint-Venant strain tensor is E =
1
2
(C− I). the hyperelastic free energy potential W = W (I1, I2) and I1 and I2 stands for the

isotropic scalar-valued invariants of C. g1(t) is the dimensionless relaxation kernel defined as
a Prony series and commonly taken as: g1(t) =

∑N
i=1 gi(e

−t
τi ) with gi and τi are material’s

parameters. gi > 0 , g∞ = 1−
∑N

i=1 gi . G0 is the instantaneous linear shear modulus.
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3 ON THE CAPABILITY TO PREDICT TIME-DEPENDENT EXPERIMENTS

3.1 Monotonic tests

(a) NeoHoohean
10 % min−1

(b) Mooney Rivlin
10 % min−1

(c) 2nd Ord. poly
10 % min−1

(d) 2nd Ord. poly
100 % min−1

Figure 1: BIIR
monotonic tension

The available experimental data are for an uniaxial tension test and a sim-
ple shear test, with different strain-rates. Considering purely hyperelastic
response, we make use of the equilibrium strain-stress curves for the iden-
tification of the hyperelastic potential. Herein, we made the choice on
the polynomial hyperelasic form and its particular cases NeoHookean and
Mooney-Rivlin. Considering viscoelastic phenomena, we identified the
prony series through normalized shear relaxation data.
The response of monotonic tension/shear nominal stress for bromobutyl
BIIR material are reported in Fig.1 . The considered models present the
capability to take into account a strain rate effect, with higher stain rates
leading to a higher stress at same deformation level. Considering a Neo-
Hookean or a Mooney-Rivlin hyperelastic potential, the predicted data are
seen to be non accurate, and all the models could not predict the second
inflection point. Considering the 2nd Order Polynomial hyperelastic poten-
tial, we observed that the Christensen model (1a) is seen to highly over-
estimate the nominal stress level for high strains, not to exceed 100% of
deformation. Fosdick & Yu model (1b) is seen to underestimate the stress
level for the three materials, and has the lowest stress level through all
models. Nevertheless, the predicted level is seen to be acceptable. Mean-
while, both BKZ (1c) and Simo (1d) models were able to give a better
approximation of the stress level. The prediction is quite good and the
predicted stress is in a good range.

3.2 Relaxation tests

The evaluation of the prony series is available in the abaqus evaluation
module for normalized shear stress relaxation experiments. The defor-
mation taken into account for shear relaxation tests is less than 50% of
deformation. For a very long relaxation time i.e t → ∞, the relaxation
equilibrium expression:
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Comparison of models response is graphically shown in Fig. 2. We observed that the Neo-
Hookean hyperelastic potential, as well as Mooney-Rivlin, the models are seen to not well
predict the relaxation test data. The 2nd order Polynomial hyperelastic model offers the best
prediction for the long-term relaxation stress response and the measured error is of an accept-
able level. The major difference between models is seen for the hysteritic part. The Simo model
is seen to offer a good fidelity to approximate low times stress. Christensen and Fosdick &
Yu models underestimate the hysteritic stress level while the BKZ model is observed to highly
overestimate the instantaneous relaxation stress.

4 ON THE CAPABILITY TO PREDICT FREQUENCY-DEPENDENT EXPERIMENTS

The determination of the complex shear modulus was introduced by [6] and is a Fourrier trans-
form of the governing equations defined for a kinematically small perturbation about a pre-
deformed state. Since the available experimental data in the frequency domain are limited to
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(a) NeoHookean (b) Mooney-Rivlin (c) 2nd Order Polynomial

Figure 2: Relaxation response with different hyperelastic model: Material NR

30%, and the procedure is linearized for high order strains, a Mooney-Rivlin potential leads to
sufficient results. Therefore, we used the following state of loading:

γ(s) = 0 s < 0 ; γ(s) = γ0 0 6 s 6 t0 ; γ(s) = γ0 + γae
(iωt) t0 6 s 6 t (3)

We assume that |γa| << 1 and that a steady-state solution is obtained. The dynamic stress has
the form:

σ∗(ω) = G∗(ω, γ0)γ(ω) ; G∗(ω, γ0) = Gs(ω, γ0) + iGl(ω, γ0) (4)

where Gs = < [G∗(ω, γ0)] and Gl = = [G∗(ω, γ0)] are the shear storage and loss modulus.

(a) shear storage,
10% predeformation

(b) shear storage,
30% predeformation

(c) loss factor, 10%
predeformation

(d) loss factor, 30%
predeformation

Figure 3: NR/BIIR dynamic proper-
ties at different predeformation levels

As shows Fig 3, following observations have been
made for the shear storage modulus: Simo model have
shown an excellent approximation of the dynamic shear
storage modulus with respect to frequency and prede-
formationw while Christensen model underestimates
the shear modulus at 10% of deformations and over-
estimate the properties at higher predeformation: this
model was not able to predict the softening of the ma-
terial occuring with increasing predeformation level.
Fosdick and Yu model’s response underestimates the
materials response and the BKZ model’s response is
not in an acceptable range. Interested in the shear loss
factor, the frequency dependence of the compared mod-
els is pronounced, and all models are seen to offer a
good approximation of this factor. The Simo model
slightly underestimate the response, and the maximum
deviation is of about 10%. One can observe that al-
though the BKZ model could not predict the storage
modulus, is have shown the ability to well approximate
the damping of the materials.
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