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ABSTRACT

The Variational Theory of Complex Rays (VTCR) is a numerical technique that has been
developed for the prediction of vibration problems in the medium frequency regime. It is a Trefftz
Discontinuous Galerkin method which uses plane wave functions as shape functions. As such, one
of its characteristics is the necessity for the shape functions to satisfy exactly the governing
equation. For heterogeneous media, this is clearly a difficulty, as no such exact solution is known.
In this paper, the VTCR is extended to bypass this difficulty, by creating a new base of shape
functions.

[1] INTRODUCTION

Today, one way to efficiently solve the medium frequency problems is to adopt a Trefftz approach.
By doing this, the user makes an analysis based on shape functions which satisfy exactly the
governing equation, then containing a strong knowledge of the physical problem. These methods
are, for example, the partition of unity method [1], the ultra weak variational method [2], the least
square method [3], the plane wave discontinuous Galerkin method [4], the method of fundamental
solutions [5] the discontinuous enrichment method [6], the wave based method [7]. The
Variational Theory of Complex Rays (VTCR), which is the approach used in this paper, also
belongs to this category of strategies. It has been introduced in [8]. All these techniques have
shown a good efficiency for the resolution of vibration problems. However, they are mainly all
limited to homogeneous media, i.e. to constant wave numbers.

mailto:riou@lmt.ens-cachan.fr


MEDYNA 2017 25-27 Apr 2017, Sevilla (Spain)

In this paper, we propose a development of the VTCR which allows us to solve vibration
problems with varying wave numbers. It is based on the definition of a new type of shape
functions, composed of Airy functions, which satisfy a priori the dominant part of the governing
equation.

[2] REFERENCE PROBLEM TO SOLVE

Let us consider a 2-D Helmholtz problem defined on Ω  with the boundary ∂Ω=∂1Ω∪∂2Ω
where Dirichlet and Neumann can be prescribed. The reference problem to solve is: find
u∈H 1(Ω)  such that

(1−i η)Δ u+k 2 u=0  over Ω
u=ud  over ∂1Ω
(1−i η)∂nu=gd  over ∂2Ω

where η  is the (positive) damping coefficient, k  the wave number and ∂n  is the normal
derivative. ud  and gd  are prescribed boundary conditions.

[3] VTCR FORMULATION OF THE REFERENCE PROBLEM

Let us suppose that Ω  is partitioned in E  subdomains: Ω=∪e=1
E Ωe . We denote by Γe , e '  the

common boundary between Ωe  and Ωe' , and by Γe ,e  the common boundary between Ωe  and
∂Ω . The VTCR strategy consists in finding the solution

 u∈U={u /ue∈U e={ue /(1−i η)uE+k 2 uE=0  over Ωe }}
such that

Re(−ik (∑e∫Γe , e' ( 1
2

{ qu . n}ee ' { v }ee'−
1
2
[qv .n]ee' [u]ee ')dS

−∑e∫Γee∩∂1Ω
qv .n (u−ud)dS+∑e∫Γee∩∂2Ω

(qu .n−g d)v dS ))
=0    ∀v∈U

where { u}ee '=(ue+ue ')Γee '
, [u]ee '=(ue−ue ')Γee '

, qv=(1−i η)grad u . The over bar represents
the complex conjugated part of a number, and Re the real part. The existence and uniqueness of
solution in this kind of variational formulation have been proved in [9]. An approximated solution
can be found by satisfying this variational formulation in a subspace of U  of finite dimension.

[4] DEFINITION OF SHAPE FUNCTIONS

As mentioned in the introduction, we consider here the case where the wave number varies. We
suppose, then, that we can write k 2=α x+β y+γ , α , β  and γ  being constant parameters in
Ωe . The shape function needs to satisfy (1−i η)u+k 2 u=0 . It can be shown that, in such a case,
the shape function are described by Airy functions. Different description can be used when
selecting Airy functions. We have decided to use this description: the shape functions are
d e s c r i b e d b y Ψ( x , y)=F ( x̃)G ( ỹ) , w h e r e F ( x̃)=Bi (− x̃)+i Ai (− ỹ)  a n d
G ( ỹ)=Bi (− ỹ)+i Ai (− x̃) , where Ai  and Bi  are the Airy functions. The new space variables

are defined by x̃=
k m

2 cos2θ+α( x−xm)

α2 /3(1−iη)1 /3
 and ỹ=

k m
2 sin2θ+α( y−ym)

β2 /3(1−i η)1/3
. k m

2  represents the

2
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minimum value of k 2  on Ωe  and ( xm , ym)  is the coordinate which enables k 2  to take its

minimum value k m
2 . θ  represents the polar direction in the 2-D coordinates. Thanks to this way

of doing, the selected shape functions satisfy the properties F ( x̃)→cos(k 1 x)+i sin (k 1 x)  when
α→0 , and G ( ỹ)→cos(k 2 y)+i sin (k 2 xy)  when β→0 . Then, the shape functions tend toward

propagative plane waves when the medium becomes homogeneous.

In order to have an approximated solution, one just needs to satisfy the variational formulation in
a subspace U N  of U , of dimension N . The classical way to define such a subspace is to select
only N  direction θi , θi∈{0 ;2∗π/N ; ... ;(N−1)π /N } , in the 2-D polar representation. By
doing this, one naturally gets a matrix system to solve, where the matrix corresponds to the
projection of the bilinear part of the variational formulation on U N×U N , the second member  its
projection on U N  and the unknown vector the amplitudes of the N  shape functions Ψ i  which
approximate the exact solution.

[5] NUMERICAL ILLUSTRATION

We consider a simple geometry of square [0 m;1 m]×[0 m;1 m] for the domain Ω . In this
domain, η=0.01 , α  = 150 m−3, β  = 150 m-3 and γ  = 1000 m. The selected boundary

conditions are Dirichlet conditions such that the exact solution is uex=∑i=1

3
Ψi( x , y)  with

θ1=10° , θ2=55°  and θ3=70 ° . The relative error between the exact and the approximated

solution is computed through √∫Ω∣u−uex∣
2
dΩ/∫Ω∣uex∣

2
d Ω . Three space decompositions are

considered: either Ω  is considered as one subdomain, or is cut in four parts, or in nine parts (see
figure 1).

Figure 1. The considered decompositions for the selected example in Section 5.

As shown in figure 1 and explained in the last section, the approximated solutions are searched by
using N  shape functions regularly distributed in the 2-D polar coordinates, in each sub-domain
of Ω . The convergence curve is represented in Figure 2.

As one can see, the strategy converges very fast toward the exact solution. Then, with the VTCR,
few degrees of freedom are needed to get a good proximation of the solution of the reference
problem. Moreover, one can see that the VTCR better works with large subdomains with many
shape functions inside, than small subdomains with few shape functions inside. This behaviour
has already been observed on the classic VTCR.
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Figure 2. Convergence curves for the example considered in Section 5.

[6] CONCLUSION

In this works, we present how to use the VTCR for the resolution of heterogeneous media. The
definition of a new type of shape function is done. This can be used on media where the wave
number linearly varies thanks to the space. A numerical example shows that this works perfectly,
and that it behaves like the classic VTCR. More complex media are the focus of our research.
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