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ABSTRACT  
 

The problem of geometrically nonlinear free vibration of symmetrically laminated composite 

clamped beams (SLCCB) is described by an N-dof discrete model of an equivalent isotropic 

beam, with effective bending and axial stiffness parameters. The model is made of (N +1) bars, 

connected by N masses placed at the bar ends, connected by rotational springs, presenting the 

beam flexural rigidity. The large transverse displacements of the bar ends induce a variation in 

their lengths giving rise to axial forces causing the nonlinear effect and modeled by longitudinal 

springs. The nonlinear vibration problem, defined in terms of the mass tensor mij, the linear 

rigidity tensor kij and the nonlinearity tensor bijk,, is reduced, via application of Hamilton’s 

principle, to a nonlinear algebraic system solved using an explicit method for calculating the  

(SLCCB) fundamental nonlinear mode and associated amplitude dependent frequency 

parameters. The numerical results are found to be in a good agreement with previously published 

results, based on a semi analytical composite beam continuous theory. The discrete system for the 

(SLCCB), developed and validated here, can be used in further applications to investigate 

nonlinear vibrations of non-uniform composite beams, with irregularities in the mass or in the 

stiffness distributions. 
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1 INTRODUCTION 

In a series of previous works, it has been shown, both theoretically and experimentally, that beams 

constrained at both ends exhibit significant geometrical nonlinear behaviour at large vibration 

amplitudes, due to the axial strains induced by the large displacements.  It has been shown also 

that composite structures exhibit a more accentuated nonlinear behaviour than those made of 

classical materials [1].  Symmetrically laminated clamped composite beams (SLCCB) are used in 

the design of many engineering structures such as aircrafts, space vehicles, and defence industries. 

Very often, they are subjected to high excitation levels in severe work environments inducing 

large vibration amplitudes.  It is important in such situations, for obvious security and comfort 

reasons, that analytical and numerical tools are available, which enable designers to analyze and 

estimate accurately how far the structural dynamic characteristics deviate from those predicted by 

linear theory.   In [2], the nonlinear homogeneous beam bending vibrations have been investigated 

using an N dof discrete system made of (N +1) bars, connected by N masses placed at the bar 

ends, connected by (N+2) rotational springs, presenting the beam flexural rigidity (see figure 1). 

The large transverse displacements of the ends of the bars, modelled by longitudinal springs (see 

figure 2), induce a variation in their lengths giving rise to axial forces causing geometrical 

nonlinearity.  The analogy between the characteristics of the classical continuous beam model and 

those of the present discrete model was developed.  The nonlinear vibration problem, defined in 

terms of the mass tensor mij, the linear rigidity tensor kij and the nonlinearity tensor bijkl, was 

reduced, via application of Hamilton’s principle, to a nonlinear algebraic system solved using the 

so-called first formulation developed in [3].  The main advantage of nonlinear physical discrete 

models is their ability to be used quite easily to analyze the nonlinear behaviour of beams with 

irregularities in the geometry, mass or stiffness distributions.  It was then interesting to examine 

the extension of the discrete model to inhomogeneous beams, such as the (SLCCB) examined in 

the present work.  The approach adopted is based on the combination of a homogenization 

procedure [4, 5] with the N dof discrete model [2] to obtain an equivalent homogeneous beam 

with effective bending and axial stiffness parameters.  

 

 
 

Figure1: The N dof discrete model of the (SLCCB)                 Figure 2: Nonlinear effect due to the                              

Pythagorean Theorem      

2 DISCRETE FORMULATION AND NUMERICAL RESULTS  

The (SLCCB) studied in [4], [5] and [6] and examined in this work (Figure 3) has the following 

geometrical and mechanical characteristics:  h = 0,001; b = 0,01; L = 0,25m; E1=155 GPa, 

E2=21,1GPa,  ρ=1560 Kg/m3, υ12 = 0,248).   The intermediate parameters and Lay-up allowing 

calculation of the equivalent isotropic beam parameters, i.e.  11( )effES bA  and
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11 11 11( ) ( ( ))effEI b D B A  , which are the effective axial and bending stiffness respectively, for the 

four composite beams considered in the present paper are given in Figure 3. 

 
 

 

Figure 3:  Laminated beam notation and characteristics 

Consider the N dof discrete system developed in [1] for an isotropic beam.  The nonlinear 

differential equations governing the system nonlinear dynamics is written in the displacement 

basis (DB) in a matrix form as follows:  

           2 0K A M A B A A      (1) 

A discretization procedure, similar to that developed in [1], is applied to the equivalent isotropic 

beam using the parameters  
eff

ES and  
eff

EI  calculated as functions of the composite beam 

stiffness coefficients A11, B11 and D11 by: 
11( )effES bA ; 2

11 11 11( ) ( ( ))effEI b D B A   [4, 5].The 

effective parameters are inserted in the rigidity matrix  K  and the nonlinear rigidity tensor 

 B A    presenting the discrete system through the rotational and longitudinal spring stiffness 

defined by: 
 

eff
EI

C
l

  and 
 

eff
ES

k
l

 .   It should be noted that the calculations, based on the  so-

called first formulation presented in [3], are performed in the modal basis (MB), in order to yield 

good estimates of the (SLCCB) amplitude dependent nonlinear frequencies using the single mode 

approach (SMA), giving: nl 2 211 1111
disc 1

11 11

3
( ) = +

2

k b
a

m m
 . For validation purposes, the numerical results, 

based on equation (1), for (SLCCB) vibration amplitudes up to 1.5 times the beam thickness are 

presented in Figure 4 for four composite beams and compared to those of references [5], [6] 

showing a satisfactory agreement.  For higher amplitudes, the so-called second formulation 

developed in [3], which is known to have a wider range of validity, may be used as an alternative 

to the iterative method for solving the nonlinear amplitude equation. 
 

 
 

Figure 4: Comparison of the nonlinear frequencies obtained for different (SLCCB) lay-up by the 

present discrete model with previously published results 
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Unidirectional present method

Unidirectional from ref [5]

Unidirectional from ref [6]

(0°/90°/90°)s present method

(0°/90°/90°)s  from ref [5]

(0°/90°/90°)s from ref [6]

(90°/90°/0°)s present method

(90°/90°/0°)s from ref [5]

(90°/90°/0°)s from ref [6]

Cross-ply present method

Cross-ply from ref [5]

Cross-plyfrom ref [6]
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3  Conclusion  

The problem of geometrically nonlinear vibrations of (SLCCB) is described by an N-dof discrete 

model of an equivalent isotropic beam, with effective bending and axial stiffness parameters. The 

model is made of (N +1) bars, connected by N masses placed at the bar ends, connected by 

rotational springs, presenting the beam flexural rigidity. The large transverse displacements of the 

bar ends induce a variation in their lengths giving rise to axial forces causing the nonlinear effect 

and modelled by longitudinal springs. The nonlinear vibration problem, defined in terms of the 

mass tensor mij, the linear rigidity tensor kij and the nonlinearity tensor bijkl, is reduced, via 

application of Hamilton’s principle, to a nonlinear algebraic system solved using an explicit 

method for calculating the (SLCCB) fundamental nonlinear mode and associated amplitude 

dependent frequencies. The numerical results are found to be in a good agreement with previously 

published results, based on a semi analytical composite beam continuous theory. As has been 

done with isotropic beams  in  [4, 5 and 6],  the discrete system for the (SLCCB), developed and 

validated here, may be used in further applications to investigate nonlinear vibrations of non-

uniform composite beams, carrying point masses, or beams with irregularities in the mass [7] or in 

the stiffness distributions.  
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