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ABSTRACT

The non-linear vibrations of a beam carrying a point mass at an arbitrary location and restrained
by translational and rotational springs at the two ends are investigated analytically and a
parametric study is performed, allowing examination of all possible combinations of classical
restrained end conditions, including elastic restraints. The dynamic equation was written at two
intervals of the beam span with appropriate end and continuity conditions. After the necessary
algebraic transformations, the generalised transcendental frequency equation was solved
iteratively using the Newton Raphson method. Once the corresponding program implemented,
investigations have been made of the changes in the beam frequencies and mode shapes for many
values of the mass, mass location and spring stiffness. Numerical results and plots have been given
here of the beam frequencies and first mode shape corresponding to various situations. The effect
of geometrical non-linearity has then been investigated using a semi analytical method based on
Hamilton’s principle and spectral analysis leading to solution of a non-linear amplitude equation.
A single mode approach, performed in the modal basis, has been adopted in order to obtain, for
various configurations of the beam examined, the backbone curves giving the amplitude dependent
nonlinear frequencies.
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1 INTRODUCTION

The operation of machines (machine tools, automotive, robot manipulators and others) introduces
dynamic constraints on the various components of the engine and the supporting elements. To
ensure correct operation, reduce the induced noise, and increase the machine fatigue life, it is
essential to determine the natural frequencies of the system, in both the linear and non-linear
regimes. Many such situations may be modeled by a beam carrying one or many masses, restrained
at its ends by flexible rotational and translational springs [1-2].  This makes it possible to study
different types of restrained end conditions, such as simply supported or clamped, depending on the
values assigned to the spring stiffness. The vibrations of restrained beams supporting point masses
have been partially examined before [1-3] but all of the studies available are restricted to the linear
case. The present paper is based on a systematic parametric study allowing easy choice of the
position of the mass to be added in order to adapt the linear frequencies and avoid possible
resonances. In the second part, the effect of geometrical nonlinearity on the system “beam + added
mass” amplitude dependent nonlinear frequencies is investigated. A single mode approach is
adopted, combining the semi analytical method for nonlinear structural vibrations developed
previously [4] and the linear modes calculated in the first part, and allowing various backbone
curves to be drawn, corresponding to various values of the spring stiffness and added mass.

Figure. 1. The restrained beam with a point
mass. Beam characteristics (L, S, , E, I) Table1: eigenvalues of the “beam mass” for different

values of the rotational stiffness, mass and mass locations

2 VIBRATION OF A RESTRAINED BEAM CARRYING A POINT MASS

Consider the beam shown in Figure1, with a point mass m, restrained at the ends by translational
and rotational springs. The beam transverse displacement is W( x,t ) w( x )sin( t ) 

The problem under consideration is governed by the following differential equation:
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point mass. The constants aj, bj, cj, dj are determined by the continuity and end conditions:

At the ends:
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
K3=10 k4=10 K3=100 k4=100 K3=10 k4=100

M=0,5 M=1 M=0,5 M=1 M=0,5 M=1

0 4,15566 4,15566 4,64132 4,64132 4,39001 4,39001

0,1 4,10204 4,04572 4,61416 4,58502 4,31999 4,24643
0,2 3,89071 3,66687 4,40167 4,17988 4,06073 3,79719
0,3 3,64396 3,32802 4,07685 3,72112 3,78953 3,44078

0,4 3,48471 3,13988 3,85720 3,46419 3,63523 3,26359
0,5 3,43214 3,08101 3,78481 3,38463 3,60750 3,23319
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Continuity conditions:
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Equations 4 to 7 give a linear system with eight equations and eight unknowns whose determinant
must vanish, leading via application of a Newton–Raphson algorithm, to the vibrating beam
frequencies and mode shapes.  The corresponding numerical results are summarised in Table1.

3 APPLICATION: A UNIFORM RESTRAINED BEAM WITH ONE POINT MASS

The effect of the added mass location on the beam first frequency, with its associated mode
and curvatures, is shown in Figure 2 for various values of the rotational stiffness for M = 0.5. located
at u=L/2. These results are summarised in Table 1.

Figure. 2 (a) First mode and (b) Curvatures for M = 0.5,u=0.5 and various values of k

4 GEOMETRICALLY NONLINEAR VIBRATION OF A RESTRAINED BEAM
CARRYING A CONCENTRATED MASS.

At large vibration amplitudes, the beam shown in Figure1 kinetic energy T, linear strain energy Vlin
and nonlinear strain energy VNlin induced by large deflections can be expressed as [4]:
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Expanding w(x,t) as a series of basic spatial functions: i i i iw( x,t ) q ( t )w ( x ) a w sin( t )   and applying
Hamilton’s principle and integrating the time functions over a period of vibration, the system
dynamics is governed by [1]:

          22 3 2K A B A A M A     (9)

in which {A} is the column vector of the basic function coefficients, and [K] and [M] are the rigidity

and mass matrices, and   B A 
  is the nonlinear geometrical rigidity. Equation 9 is the Rayleigh-

Ritz formulation of the nonlinear problem, to be solved numerically, or explicitly. From equation
9, the frequencymay be obtained by pre multiplying the two hand sides of the equation by {A}T,
which gives:
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The single mode approach, consists of neglecting all the basic functions except a single ‘‘resonant’’
mode. Thus, it reduces equation 10(a) to 10(b), in which [K]=k11, [M]=m11, [B({A})]=b1111. Figure
3(a) shows the backbone curves corresponding to various values of the mass, mass location and
rotational spring stiffness. Figure 3(b) shows the curvatures associated to the first nonlinear mode.

Figure 3 (a)Backbone curves for various values of the mass, mass location and rotational stiffness;
(b) curvatures associated to the first nonlinear mode

5 CONCLUSION

The non-linear vibrations of a beam carrying a point mass at an arbitrary location and supported by
translational and rotational springs at the two ends have been investigated analytically and a
parametric study was performed, allowing examination of many combinations of classical end
conditions, including elastic restraints.  The dynamic equation was written at two intervals of the
beam span with appropriate end and continuity conditions. After the necessary algebraic
transformations, the generalised transcendental frequency equation was solved iteratively using the
Newton Raphson method. Numerical results and plots have been given of the beam frequencies and
first mode shape corresponding to various situations. The effect of geometrical non-linearity has
then been investigated using a semi analytical method based on Hamilton’s principle and spectral
analysis leading to solution of a non-linear amplitude equation. A single mode approach, performed
in the modal basis, has been adopted in order to obtain, for various configurations of the beam
examined, the backbone curves giving the amplitude dependent nonlinear frequencies.
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