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ABSTRACT

A vast literature has been devoted to the transverse vibration and the sound radiation of ribbed
plates over the last decades. The present study has been motivated by the analysis of the dynam-
ical behaviour of piano soundboards. As a rough approximation, a piano soundboard can be
considered as an orthotropic ribbed plate. Our purpose is to establish condensed descriptions
for their dynamics. For low frequencies, regularly ribbed plates can be considered as homo-
geneous plates. It is usually considered that homogenization is valid only up to a frequency
corresponding roughly to the confinement of one half wave-length between the (periodically
spaced) ribs. Beyond that frequency, depending on the relative characteristic mobility of the
ribs and that of the base plate, the ribs may constrain transverse waves to be guided between
them. We focus here on the spatial spectrum of the normal modes of the ribbed plate (2D
Fourier transforms of the modal shapes). It appears that most of the peaks of each spectrum
can be seen as belonging to one of a few dispersion branches in an appropriate (ω, k)-plane.
Interestingly, different peaks of a spectrum (of one given mode) usually "belong" to different
dispersion branches. When valid, this description may prove an interesting intermediate step to
derive approximations for the sound radiation of such plates.
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1 INTRODUCTION

This study has been motivated by the analysis of the dynamics of piano soundboards, which
are sophisticated ribbed plates[1]. We consider here a more simple system which consists in a
thin rectangular plate represented in Fig. 1 (axes of the Oxy-frame of reference parallel to the
sides of the rectangle, Lx = 1.39m, Ly = 0.91m, h = 0.008m). The regularly-spaced ribs are
oriented in the OX-direction (θ = (Ox,OX) =1.0065 rad), with inter-rib spacing d =0.13m.
Materials are orthotropic (ρ =392 kgm−3, EX =11.5× 109 Pa, EY =0.47× 109 Pa for the
main plate and for the ribs, corresponding to one quality of spruce). Note that the geometry
does not correspond to the so-called special orthotropy configuration (OX = Ox) and that
(incidentally, not necessarily) the ribs are in the direction of one orthotropy axis. Here, boundary
conditions have been chosen as clamped all around the plate.

The plate has been modelled as a thin plate (Kirchhoff-Love theory) and treated by
means of FreeFem++, a Finite-element software, yielding the normal modes.

2 MODAL SPECTRA
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Figure 1: Left: The ribbed plate. Right: largest peak of all the modes as a function of the
corresponding eigenfrequency (the oblique thin lines are a graphic artefact)

Since no dissipation is included in the mechanical model, the eigenvectors are real.
These modal shapes are represented with real numbers (positive or negative) and no phase (no
information is lost). Given that choice, a 2D Fourier transform has been applied to all modal
shapes, yielding modal spectra Sm(kx, ky) ∈ R.

As a first step, we extract the dominant peak principal from each spectrum. Its magnitude is
represented in Fig. 1 as a function of the angular frequency of the corresponding normal mode.
The figure displays three distinct branches which look like dispersion branches. However, one
must keep in mind that data in this figure only represent a very partial view on the modes
(limited to their principal wave-number).

Another view on all modes consists in adding all (spatial) spectral components in the
(kx, ky)-plane. In such a representation, the eigenfrequencies are lost, as well as any form of
visual clarity of the corresponding diagram (not represented). The interesting point is that clarity
is retrieved when an appropriate ω-scaling is applied to the wave–number components kx or ky,
as done in the next sections. The first scaling (Section 3) corresponds to a homogeneous-plate
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dynamics whereas guided-wave regimes (not completely understood at this point) correspond
to the first and second branches (Section 4).

3 HOMOGENEOUS-PLATE BRANCH
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Figure 2: Dispersion maps. Left frame: scaling applied on modes with eigenfrequency below
2kHz. Right frame: same, on modes beyond 2kHz.

The dynamical equation ruling the transverse motion w of the non-homogeneous or-
thotropic thin plate is
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where D1 and D3 on one hand, D2 and D4 on the other hand are of the form

D1,3 =
EX,Y h
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+
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3

6
(νY XEX = νXYEY ) (2)

The dynamical rigidities D are not constant over this non-homogeneous plate.
It is commonly accepted that homogenization theories can account for the dynamical

behaviour of non-homogeneous plates at low frequencies only. Looking at Fig. 1, one can infer
that more or less all modes below fH (with 1.5 < fH < 2kHz) could be described as normal
modes of a homogeneous plate. Applying homogenization to the ribbed plate considered here,
as in studies reported in [1], yieldsEXH =1.45× 109 Pa, EY H =5.51× 109 Pa, ρ =227 kgm−3

and dH =16.9mm and the following dynamical equation for the equivalent homogeneous plate:
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2 (3)

in the reciprocal space (kX , kY ). By construction, the homogeneous equivalent plate has an
elliptic orthotropy: D2H +D4H =

√
D1HD3H.

With K = k/
√
ω (generic notation), Eq. (3) becomes
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We represent the results of this rescaling on all the modal spectra in Fig. 2. By analogy with the
"dispersion curve" terminology in the (ω, k)-plane, we call "dispersion map" this representation
of the spectra of the normal modes.
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Several features are quite remarkable here. (a) The left frame exhibits the expected
homogeneous dynamical behaviour, but for nearly all the spectral components of the modes,
not only the principal peaks. The figure is nearly elliptical and the expected quantities D1H

and D3H are retrieved on the long and short axes respectively. (b) This homogeneous dynamics
extends far beyond the upper frequency fH beyond which the homogenization becomes invalid
for describing the whole dynamics of the ribbed plate. This applies to part of the spatial spectra,
as shown by the large blurry yellow zone, which does not follow this well-identified dynamics.
(c) Above fH, the elliptic homogenization is slightly altered.

4 GUIDED-WAVE BRANCHES
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Figure 3: Dispersion maps with scaling by
√
ω − ω1,2 applied to kY , the kX-axis remaining

unchanged. Each scaling is suited to one guided-wave branch. Left: all modes with an eigen-
frequency above ω1. Right: all modes with an eigenfrequency above ω2.

We observe in Fig. 1 that above a transition occurring around ≈ 1.5 − 2kHz, the prin-
cipal wavenumber of the two additional branches is essentially driven by its kY -component. A
more detailed analysis reveals that the kX-components of the first guided-wave branch are all
in the [0, π/d] interval (more or less uniformly distributed) whereas the kX-components of the
second guided-wave branch are more scattered in the [3π/(2d), 3π/d] interval: modes start to
exhibit a guided-wave behaviour. As opposed to the previous section, the scaling here is by√
ω − ω1,2. Hypothetically, the cut-off frequency ω1,2corresponds, dynamically, to a low kX ,

characteristic of the guided wave. An effective dynamical rigidity of the waveguide can be
derived from Fig. 3. Surprisingly, its value appears to be less than that of the plate without ribs.

5 CONCLUDING REMARKS

Interestingly, the homogeneous and guided-wave regimes are not exclusive of each other. In
fact, each mode tends to display some spectral components on each of the different branches (at
least, above fH).
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