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ABSTRACT 
 

The present paper concerns the nonlinear dynamic behaviour of orthotropic rectangular plate 
under boundary conditions (C-C-C-SS) and (C-C-SS-SS). The main objective is to find semi 
analytical solutions for the first non-linear mode shapes and the associated non-linear frequencies 
of the composite plates at large vibration amplitudes. The basic formulation of nonlinear free 
vibrations has been developed based on the classical plate theory (CPT) and the nonlinear strain-
displacement relation. The nonlinear governing equations are derived from Hamilton's principle 
and the Von Kármán geometrical non-linearity assumptions. Assuming the out-of-plane 
displacement as a double trigonometric function, the in-plane displacement components are found 
by solving the nonlinear algebraic equations of motion expressed in terms of displacements. The 
improved version of the Newton-Raphson method and the semi-analytical model developed by El 
Kadiri et al. for fully clamped rectangular plates, has been adapted to the above cases.  
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1 INTRODUCTION 

Laminated composite plates are frequently used in various engineering applications in the 
aerospace, mechanical, marine, and automotive industries because of their advantages such as high 
stiffness-to-weight and strength-to-weight ratios. In the case where these structures are subjected to 
dynamic loads may induce large amplitude vibrations and, thus, the structure may exhibit 
significant nonlinear behaviour that must be studied for the efficient design of such structures. 
Numerous methods have been developed to perform geometrically nonlinear analysis of plates. 
Benamar et al [1] presented a theoretical formulation of the plate vibration problem at large 
displacement amplitudes. Han and Petyt [2], Ribeiro and Petyt [3] have been presented dealing with 
the geometrically non-linear dynamic behaviour of symmetrically laminated plates by using the 
hierarchical finite element method (HFEM). Harras and Benamar [4] investigated theoretical 
and experimental of the non-linear behaviour of various fully clamped rectangular composite 
panels at large vibration amplitudes. El Kadiri et all [5, 6] presented a semi-analytical method, 
based on Hamilton's principle and spectral analysis, for the determination of the geometrically 
non-linear free response of thin straight structures. Several review articles on orthtropic plates 
have been reported in the literature by various researchers, such as Leissa [7], Reddy [8], and Noor 
et al. [9]. 
In the present paper the method developed by El Kadiri et al. is extended to the geometrically 
nonlinear analysis of orthotropic plate with two boundary conditions (C-C-C-SS) and (C-C-SS-SS). 
This boundary conditions are widely used in aerospace structures. On the other hand, this study will 
contribute to generalize and extend the model to different conditions. 

2 THEORY 

Consider the transverse vibration of C-
C-SS-SS rectangular plate which is 
clamped on two edges, and simply 
supported in the other edges. This plate 
is shown in figure 1. 
                                                           

For the classical plate laminated theory, the strain-displacement relationship for large deflections: 

 

�

𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦 𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥 

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕⎦
⎥
⎥
⎥
⎥
⎥
⎤

 +

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−𝜕𝜕²𝑊𝑊
𝜕𝜕𝜕𝜕²

−𝜕𝜕²𝑊𝑊
𝜕𝜕𝜕𝜕²

−2 𝜕𝜕²𝑊𝑊
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕⎦

⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎡1
2  � 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 �

2

1
2  � 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 �

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕  𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕  ⎦

⎥
⎥
⎥
⎥
⎥
⎤

≡ {𝜀𝜀} = {𝜀𝜀0} + 𝑧𝑧{𝜅𝜅} + {𝜆𝜆0} (1) 

where {𝜀𝜀0} and 𝑧𝑧{𝜅𝜅} are the membrane and the flexural strain tensors, respectively, and U, V, W 
are the middle surface displacement components in the x, y and z directions respectively. 
The free vibrations of the structure are governed by Hamilton’s principle which is symbolically 
written as 
 𝛿𝛿 � (𝑉𝑉 − 𝑇𝑇)𝑑𝑑𝑑𝑑 = 0

2𝜋𝜋

0
 (2) 

 

In which 𝛿𝛿 indicates the variation of the integral. V and T are respectively the total strain energy 
and the kinetic energy, where  𝑉𝑉 = 𝑉𝑉𝑎𝑎 + 𝑉𝑉𝑏𝑏. Replacing T and V in this equation by their expressions 
given above, integrating the time functions, and calculating the derivatives with respect to the ai, 
leads to the following set of non-linear algebraic equations:  

Figure 1. Plate notation 
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 3aiajakbijkl∗ + 2ajkir∗ − 2aiω∗2mir
∗ = 0,     i = 1, … , n. (3) 

 mij = ρH5ab mij 
∗ , kij =

aH5E
b3

kij∗  , bijkl =
aH5E

b3
bijkl∗  (4) 

a, b: length, width of the plate; E: Young's modulus; H: plate thickness; 𝑎𝑎𝑘𝑘: contributions 
corresponding to the kth basic functions; ρ: mass density per unit volume of the plate. 
ω, and ω∗are the frequency and non-dimensional frequency parameters respectively. 
𝑘𝑘𝑖𝑖𝑖𝑖∗ , 𝑚𝑚𝑖𝑖𝑖𝑖

∗ and 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ : General  term  of  the  non-dimensional  rigidity  tensor,  mass  tensor  and non-
linearity tensor respectively. 

2.1 Explicit procedure 

In modal functions basis for the first mode (MFB): 
 

𝑤𝑤∗(𝑥𝑥∗,𝑦𝑦∗) = �𝑎𝑎𝑖𝑖Φ𝑖𝑖
∗(𝑥𝑥∗,𝑦𝑦∗) = {𝐴𝐴}𝑇𝑇{Φ∗}

𝑛𝑛

𝑖𝑖=1

 (5) 

with {Φ∗}𝑇𝑇 = [Φ1
∗    Φ2

∗ …Φ𝑛𝑛
∗ ] and  {𝐴𝐴}𝑇𝑇 = [𝑎𝑎1 𝜖𝜖2 … 𝜖𝜖𝑛𝑛] 

 

 𝜖𝜖𝑟𝑟 =
3𝑎𝑎1𝑏𝑏𝑟𝑟111∗

2((𝑘𝑘11∗ + 𝑎𝑎12𝑏𝑏1111∗ )𝑚𝑚𝑟𝑟𝑟𝑟
∗

𝑚𝑚11
− 𝑘𝑘𝑟𝑟𝑟𝑟∗ )

    (𝑟𝑟 = 2,  3 … 16) (6) 

 𝑤𝑤𝑛𝑛𝑛𝑛1∗ (𝑥𝑥∗,𝑦𝑦∗,𝑎𝑎1) = 𝑎𝑎1Φ1
∗(𝑥𝑥∗,𝑦𝑦∗) + 𝜖𝜖2Φ1

∗(𝑥𝑥∗,𝑦𝑦∗) + ⋯+ 𝜖𝜖16Φ16
∗ (𝑥𝑥∗,𝑦𝑦∗) (7) 

 

The chosen basic functions 𝑃𝑃𝑖𝑖∗(𝑥𝑥) were the linear clamped-simply supported beam functions and 
𝑄𝑄𝑖𝑖∗(𝑥𝑥)  were linear clamped-clamped beam. 
 

 Clamped-Simply supported beam 
 𝑃𝑃𝑖𝑖∗(𝑥𝑥) =  𝑐𝑐ℎ (𝑙𝑙𝑖𝑖𝑥𝑥∗) − cos( 𝑙𝑙𝑖𝑖𝑥𝑥∗) − (𝑠𝑠ℎ (𝑙𝑙𝑖𝑖𝑥𝑥∗) − sin ( 𝑙𝑙𝑖𝑖𝑥𝑥∗)) (

(𝑐𝑐ℎ (𝑙𝑙𝑖𝑖) − cos  (𝑙𝑙𝑖𝑖)
𝑠𝑠ℎ (𝑙𝑙𝑖𝑖) − sin 𝑙𝑙𝑖𝑖)

) (8) 

 Clamped-Clamped beam 
 

𝑄𝑄𝑖𝑖∗(𝑥𝑥) =
𝑐𝑐ℎ �𝜐𝜐𝑖𝑖𝑥𝑥𝑎𝑎 � − cos( 𝜐𝜐𝑖𝑖𝑥𝑥𝑎𝑎 )
𝑐𝑐ℎ (𝜐𝜐𝑖𝑖) − cos  (𝜐𝜐𝑖𝑖)

−  
𝑠𝑠ℎ �𝜐𝜐𝑖𝑖𝑥𝑥𝑎𝑎 � − sin ( 𝜐𝜐𝑖𝑖𝑥𝑥𝑎𝑎 )
𝑠𝑠ℎ (𝜐𝜐𝑖𝑖) − sin  (𝜐𝜐𝑖𝑖)

 (9) 

3 RESULTS OF NON-LINEAR ANALYSIS 

The geometrical and material properties are defined in Table 1. 

Table 1. Geometric and material properties of thin plate 
 

 
 
 
 
 

 
 
 

Geometric properties Material properties 
Orientation of principale axes :[90,45,-45,0]sym 

a=485.7mm ; b=322.9 mm ;   h=1 mm 
Ex=120.5 GPa; Ey=9.63GPa; Gxy=3.58 GPa; 
𝜈𝜈𝑥𝑥𝑥𝑥=0.32;𝜌𝜌 = 1540 𝑘𝑘𝑘𝑘/𝑚𝑚3 

Figure 1. First non-linear mode rectangular C-C-
SS-SS plate α=b/a=2/3, w*(x*,y*). 

Figure 2. Comparison of the change 
frequency of the first mode for: 𝛼𝛼 =
1,5 ;𝛼𝛼 = 1;𝛼𝛼 = 1,5. 
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Comparison of the non-linear frequency 
and linear frequency of the C-C-SS-SS 
rectangular plate, for various plate aspect 
ratios (𝛼𝛼 =a/b), where 𝑎𝑎1 represent the 
amplitude of vibration (Table 2). 

4 CONCLUSION 

o The first non-linear mode of C-C-S-S and the explicit analytical expressions for the higher 
mode contribution coefficients to the first non-linear mode shape have been obtained. 

o Numerical results obtained from the application of C-C-SS-SS rectangular plate with 
different values of aspect ratio 𝜶𝜶 have been given.  

o The validity of the current approach will be compared later those of finite element methods 
(FEM),  
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𝛼𝛼 =a/b 0.4 0.66 1 1.5 
𝜔𝜔𝑙𝑙
∗ 79.420 86.249 102.37 143.73 

𝜔𝜔𝑛𝑛𝑛𝑛
∗ (𝑎𝑎1 = 0,01) 79.4366 86.268 102.40 143.79 

𝜔𝜔𝑛𝑛𝑛𝑛
∗ (𝑎𝑎1 = 0,25) 88.988 97.063 117.93 174.59 

Figure 3. Normalised first non-linear mode 
rectangular C-C-SS-SS plate α=1,5, x*=0,5. Curve 1, 
lowest amplitude ; curve 3, highest amplitude. 

Figure 4. Normalised first non-linear mode 
rectangular C-C-SS-SS plate α=1,5, x* =0,25. Curve 
1, lowest amplitude ; curve 3, highest amplitude. 

Table 2. Comparison of non-dimensional frequency parameters 
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