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ABSTRACT

This study outlines the question of validity of statistical energy analysis with regard to its as-
sumptions. We discuss the necessity of four assumptions: rain-on-the-roof excitation, weak
coupling, large number of modes and light damping. We show that when all of these assump-
tions are satisfied, statistical energy analysis provides a satisfactory result but when one of
these assumptions is violated, statistical energy analysis prediction presents a discrepancy com-
pared to a reference calculation. The discussion is illustrated with a simple example of coupled
plates.
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1 INTRODUCTION

Statistical energy analysis [1, 2] is a well-known theory of sound and vibration suited to the
domain where the number of modes is so high that the usage of finite element method is not
tractable. Statistical energy analysis is based on statistical physics concepts such as mean-
free path, modal density and equipartition of energy. It is the counterpart of Sabine’s theory
of reverberation in room acoustics. Although it is commonly claimed that statistical energy
analysis applies at high frequencies, it is more exact to say that statistical energy analysis is the
theory of thermal equilibrium where sound and vibration are diffuse.

2 STATISTICAL ENERGY ANALYSIS

The principle of statistical energy analysis is quite simple. The main result is Lyon’s law [3],
or coupling power proportionality, which states that two subsystems in which the vibrational
field (velocity field for structure or acoustical pressure for sound) is diffuse and lightly coupled
exchange a vibrational power proportional to the difference of their modal energies. This reads

Pij = ωηijni

(
Ei

ni

− Ej

nj

)
(1)

where Pij is the mean power between subsystems i and j, Ei the mean energy, ni the modal
density, ω the centre of the frequency band of analysis, and ηij the coupling loss factor. If the
two subsystems are coupled through a spring of stiffness K then the coupling loss factor is

ηij =
πK2nj

2ω3MiMj

(2)

where Mi is the total mass of subsystem i. If the two subsystems are two-dimensional (like
plates) and are coupled through a line of length L whose mean transmission efficiency is noted
T , then

ηij =
LcgiT

πωSi

(3)

where cgi is the group speed of waves in subsystem i and Si its area. In all cases, the coupling
between subsystems must be conservative.

To derive this result, the minimal list of assumptions is

• Rain-on-the-roof excitation

• Light damping

• Large number of modes

• Weak coupling

When these conditions are satisfied, the vibrational field is diffuse in all subsystems or equiv-
alently, equipartition of energy is reached. Each subsystem is therefore in the state of thermal
equilibrium. The weak coupling limits the exchange of energy to a small level which does not
disturb the diffuse field in the vicinity of coupling.
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3 DIFFUSE FIELD

The first three conditions ensure that a diffuse field is established in all subsystems [4]. In
Figure 1 is shown the relative standard deviation of repartition of energy in rectangular plates.
The abscissa is the number of wavelengths per mean-free-path and the ordinate is the damping
loss factor of the plate. We see that the domain of diffuse field for which the standard deviation is
small is confined by two criteria. The frequency must be high (vertical line) and the attenuation
of waves must be small (horizontal line tilted on the right).
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Figure 1: Relative standard deviation of repartition of energy in rectangular plate in the dimen-
sionless wavelength - damping loss factor plane. The zone of diffuse field is confined to high
frequencies and small damping.

4 EXAMPLES OF COUPLED PLATES

The first example is shown in Figure 2. The structure is made of six rectangular plates assembled
by right angle couplings. Plate 1 is submitted to a random transverse force field (rain-on-the-
roof). The response is observed in plate 6. Three calculations are performed: a reference
calculation based on a closed form solution of the governing equations, a SEA calculation
with Equations (1) and (3), and a geometrical acoustics prediction (see Reference [5]). We
observe that when the damping is light (η = 1%), the prediction of SEA is always correct.
The four octave bands are located in the region of diffuse field of Figure 1. The error of SEA,
compared with a reference calculation is negligible. But when the damping is strong (η = 10%),
significant errors of SEA appear. Note that geometrical acoustics prediction (ray) is still valid
because the frequency remains high. This examples highlights that SEA requires two conditions
in general: large number of modes (high frequency) and low damping.

The second example is shown in Figure 3. The system is made of three rectangular plates
with random resonators and coupled through a spring of stiffness K. The coupling strength is
controlled by varying K. A single point random force assumed to be white noise is applied to
the top plate. Two calculations are performed: SEA by applying Equations (1) and (2) and a
reference calculation by a semi-analytical method. We observe that the thermal conductivity
βSEA = ωηijni predicted by SEA is correct compared to the ratio βREF = Pij/(Ei/ni−Ej/nj)
computed by the reference calculation when the coupling is weak. But when the coupling
strength increases, a large discrepancy is observed between SEA and reference. It may even
arise that the flow of energy is reversed giving a negative value of β. This anti-thermodynamics
flow of energy has been observed even for a population of nominally similar plates with different
realisations of resonators as shown by the grey zones of Figure 3.
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Figure 2: Six rectangular plates in bending vibration and results for η = 1% (middle) and
η = 10% (right). The upper bar diagrams give the energy versus octave band by three methods:
SEA, ray and reference calculation. The lower bar diagrams give the error of SEA and ray-
tracing compared to reference.
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Figure 3. Three rectangular plates in bending vibration with random resonators.

5 CONCLUDING REMARKS

In this paper, we have shown that statistical energy analysis is based on several assumptions that
are random excitation, light damping, large number of modes, and weak coupling. Although the
first three conditions may be reduced to the single condition of diffuse field in all subsystems,
the last one is an imperative requirement that cannot be relaxed in general.
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