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ABSTRACT

The vibration control of lightweight structures is nowadays a challenge of great industrial in-
terest because of obvious ecological and economical reasons. Among the possible strategies,
applying the concepts of metamaterials to the vibro-acoustics context seems to be promising.
It can be done by designing the structures as a periodic distribution of a unit cell. The overall
properties of such structures then result from a carefull design of the mechanical properties and
possible resonances of the unit cell. This work deals with beams made of uniform material and
with continuously graded flexural rigidity driven by variable thickness. The study focuses on
the first Bragg band gap of such structures by means of both theoretical and experimental ap-
proaches. Particularly, explicit relations linking the properties contrast with the band gap width
and central frequency are derived in an ideal case of a hollow beam without flanks for which
a PWE model can be analytically solved. The theoretical results obtained in this ideal case
succesfully match both the numerical results obtained from a PWE method and experimental
measurements.
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1 INTRODUCTION

From works of Brillouin on wave propagation in periodic media [1], meta-materials has been
widely studied during the last decades in many fields of physics. The typical effects obtained
with meta-materials can be exploited in three main categories of applications : wave filtering,
wave collimation and cloaking.

When applied to the context of vibro-acoustics, the case of flexural waves is of particular
interest when dealing with structure borne sound from shells or plates. Wave filtering effects can
then be very usefull to get non resonant and so non radiating structures without added mass in
given frequency bandwidths [2]. Then, providing general design rules of such meta-structures
is of great interest and still an open question [3]. For example, no explicit link between band
gap features and structure geometrical or material properties is well known.

As a preliminary work, the study of academic beams is often useful in order to apprehend
the practical and more complicated case of plates. In this work, the aim is to study how the
thickness contrast of a continuously varying periodic beam is driving the Bragg band gap central
frequency and bandwidth.

After defining a general PWE formalism of Euler beams in section 2, the ideal case of
a hollow rectangular beam is presented in section 3. Theoretical, numerical and experimental
results are then compared and discussed in section 4.

2 PWE GENERAL FORMALISM FOR AN EULER-BERNOULLI BEAM

Under Euler-Bernoulli assumtions and considering harmonic motion (ejωt), the free flexural dis-
placement w(x) in a beam of variable height h(x) and constant width b satisfies to the equation
of motion

−ρh(x)ω2w(x) +
∂2

∂x2

(
D(x)

∂2w(x)

∂x2

)
= 0, (1)

where ρh(x) is the surface mass with ρ the material volumic mass, D(x) =
Eh(x)3

12
is the

surface flexural rigidity with E = E0(1+ jη) the material complex young modulus in which E0

is the elastic constant and η is the loss factor.
According to the plane wave expansion method, the solutions of equation (1) are sought

as the following series
w(x) =

∑
g1

wg1(k)e
jg1xejkx, (2)

with k a given flexural wavenumber, g1 =
n12π

L
with n1 an integer.

Considering the beam being a periodic distribution of a unit cell of size L, the mechani-
cal properties can be expanded as the following Fourier series :

ρh(x) =
∑
g2

αg2ejg2x and D(x) =
∑
g2

δg2ejg2x (3)

where ακ =
1

L

∫ L
0
ρh(x)e−jκxdx, δκ =

1

L

∫ L
0
D(x)e−jκxdx, and g2 =

n22π

L
with n2 an integer.

Truncating the Fourier series (3) with n2 ∈ [−N2;N2] and the plane wave expansion (2)
with n1 ∈ [−N1;N1], the equation of motion (1) turns to a matrix equation

(P (k)− ω2Q)W = 0, (4)

where Wt is a [2N1 + 1× 1] column vector, Q and P are [2N3 + 1× 2N1 + 1] matrices with
N3 = N1 +N2 given by Qn3n1 = αg3−g1 and P (k)n3n1 = δg3−g1(k + g1)

2(k + g3)
2.
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3 ANALYTICAL DERIVATION OF THE FIRST BAND GAP WIDTH OF A HOLLOW
RECTANGULAR BEAM

An ideal geometry sketched in figure 1 is now defined in order to simplify the matrices in equa-
tion (4) and then analytically solve the problem. The goal is to obtain an algebraic expression of
the first Bragg band gap, defined as the difference between the two first eigenvalues at k = π/L.

t

hmaxhmin

L

hc(x)x

Figure 1: Profile view of the unit cell geomtry of the modeled rectangular hollow beam with
no flanks. The constant width b is in the out-of-plane direction.

First, the beam cross-section is considered as a hollow rectangle where the lateral walls
have been removed. The thickness t and width b of both top and bottom walls are constant while
the cross-section height varies, as represented in figure 1.

Consequently, the surface mass ρh(x) = ρ2t remains constant and so the property gra-
dient is only carried by the varying surface flexural rigity D(x) = Et

2
h2c(x) whith hc(x) the

central of both top and bottom wall.
Second, the spatial shape of beam unit cell profile is chosen as follows to make the

flexural rigidity proportional to a cosine fonction :

hc(x) = h0

√
1 + C.cos

(
2πx

L

)
=> D(x) =

Et

2
h20

[
1 + C.cos

(
2πx

L

)]
, (5)

where h0 =
√

h2max+h
2
min

2
is the equivalent central height for a uniform beam (same cross-section

with constant height), and C is the so called contrast parameter defined as

C =
h2max − h2min
h2max + h2min

. (6)

with hmax and hmin the maximum and minimum central height, respectively.

From this ideal geometry, the Fourier series in equations (3) for the surface mass and
flexural rigidity leave a single non zero term (N2 = 0) and only three non zero terms (N2 = 1),
respectively. Finally, it can be shown that the matrix problem (4) can be rewritten as a classical
eigenvalue problem with a tridiagonal matrix M = P (k)− ω2Q for which the determinant can
be found from a recurence equation.

Assuming that the field plane wave expansion is truncated with N1 = 2 (compromise
between accuracy and convenience of analytical calculations) and after few algebra leading to
cancel the matrix determinant, the gap relative bandwidth and central frequency are found to be
only function of the thickness contrast C :

df
f0
≈ C

2

(
1− C2/2

1− 3C2/4

)1/2

;
fc
f0
≈
(

1− C2/2

1− 3C2/4

)−1/2

, (7)

whith f0 = π
2L2

√
Eh20
4ρ

.
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4 RESULTS AND DISCUSSION

A thickness contrast variation is presented in figure 2. Figure 2(a) and 2(b) display the gap
relative bandwidth and central frequency, respectively. Equations (7) corresponding to the ideal
case of hollow beam with no flanks are plotted in dotted lines. The cases of the rectangu-
lar hollow beam (dashed lines) and fully filled rectangular beam (full line) are obtained from
numerical resolution of equation (4).
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Figure 2: (a) First Bragg band gap bandwidth and (b) central frequency versus contrast parame-
ter C shows no fundamental difference between cross-section geometries. Analytical results are
in agreement with full PWE numerical solutions and an experimental results of an aluminium
beam.

All results give same overall behavior : when the contrast increases, the gap is enlarged
and shifted to low frequencies. The sligth discrepancies between the results make the no flanks
assumption valid for giving a predictive analytical formula of the gap bandwidth of a fully filled
contrasted real beam.

An experimental validation has also been performed with an aluminium beam. The
beam geometry has been generated with a classical cutting machine. The relative gap width and
position are in agreement with both analytical and numerical computation (red circle in Fig. 2).

This work demonstrates, in the case of flexural unidimensional wave, how the first fre-
quency gap is fully characterized by a unique contrast parameter. Numerical simulation sug-
gests that the influence of the cross-section geometry is weak. Finally, analytical expressions of
gap bandwitdh and central frequency are derived and can be taken as benchmark for bandgap
design.
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