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ABSTRACT

The present work investigates the free undamped vibrations of arbitrarily sagged cables accord-
ing to the catenary theory. Defining the dynamic equilibrium configuration around the catenary
static profile, an exact solution of the free linear transverse vibrations is developed analytically.
The effectiveness of the established model is shown by means of comparisons between with re-
sults determined by classic formulations in case of horizontal and inclined shallow/non-shallow
cables.
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1 INTRODUCTION

The dynamic motion of cables is mainly studied with respect to both parabolic and the catenary
static profiles. Based on the first works of Irvine [1] dedicated to the free linear oscillations of
suspended cables, several research were developed according to the parabolic approach. Never-
theless, the necessity to account the catenary effect has been demonstrated for different types of
cables with important sag as those used in suspended bridges or as transmission lines. Accord-
ingly, the catenary model has been adopted in some recent papers: while an analytical solution
specific to the transversal motion was proposed by Lacarbonara et al. [2] by considering the
exact nonlinear static profile of horizontal non-shallow cables, Zhou et al. [3] has solved the in-
plane dynamic problem specific to taut inclined cables by introducing the cubic approximation
of the catenary geometry. In the light of previous models, the present work provides accurate
analytical solution based on the elastic catenary theory and related to the free linear vibrations
of both horizontal and inclined cables.

2 ANALYTICAL SOLUTION TO THE CABLE DYNAMIC PROBLEM

A suspended cable between two fixed supports A and B displayed in Figure 1 is characterized
by a specific weight γc, a non deformable cross-section denoted by Ac and a linearly elastic
material defined by a Young elastic modulus Ec. A local Cartesian coordinate system (x, y, z)
is attached to the cable’s chord having an angle α with respect to l defining the horizontal
projection of the chord cable length L.

Figure 1. Static equilibrium configuration of a suspended cable

Under the action of its total weight, the strained static profile is determined expressed as follows:
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Considering the static equilibrium configuration defined by the catenary profile given previously
and taking into account the assumptions related to the linear vibration theory, the cable dynamic
motion reduces to the transversal component characterized by dimensionless frequencies Ωk
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obtained as roots of the following transcendental equation:

tan Ωk

[
(Ω2

k + τ 2)
2

λ2
c

− I

τL

(
Ω2
k + τ 2

)
− ρ4τ

]
+ 2ρ3τ sin Ωk − ρ1Ωk +

ρ2

cos Ωk

Ωk = 0 (2)

with:
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where λ is the Irvine parameter depending on the dimensionless thrust η = T/EcAc and the
cable’s curvature χ tending to unity in case of horizontal cables according to Irvine formulation
[1] based on parabolic approach. However, accurate expression of the curvature term is obtained
according to the actual formulation for both horizontal and inclined arbitrarily sagged cables:
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It must be noted that equation (4) reduces to the formula proposed by Lacarbonara et al. [2] for
horizontal non-shallow cables given by:
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3 MODEL VALIDATION

τ Irvine’s Enhanced Irvine’s Present Exact

1.5 8.95 8.79 8.48 8.44

Error(%) 6.04 4.15 0.47

2.5 8.95 8.66 7.85 7.63

Error(%) 17.30 13.50 2.88

Table 1: Lowest symmetric frequencies of horizontal cables with λ = 10π obtained with Irvine
theory, enhanced Irvine theory, and present model, and relative errors (%) with respect to the
exact (non-condensed) model.

In order to show the accuracy of the proposed solution, an investigation is performed regarding
the evaluation of dimensionless frequencies obtained according to the actual formulation from
one side and using models found in th literatue. The results related to the comparison held on
non-shallow horizontal profiles and taut inclined cables are respectively reported in Table 1 and
illustrated by Figure 2. As it may be remarked from Table 1, the error made by the general
catenary-based model is by far smaller than those inherent to proposed solutions by Irvine [1]
and Lacaronara et.[2]. In fact, the difference between present results and exact ones ranges
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from 0.47% to 2.88%, with an expected increase for the looser cable, where the effect of the
longitudinal dynamics (herein neglected) becomes more important; however, it increases more
for both the enhanced (from 4.15% to 13.5%) and the original Irvine theory (6.04% to 17.30%).
On the other side, the validity of the present model is demonstrated by the the Figure 2 specific
to the case of taut inclined cables. As a matter of fact, the absolute relative error with respect to
the frequencies found by the Galerkin (resp. Zhou) varies from 0.03% (resp. 0.07%) to 1.202%
(resp. 1.47%) for an inclination α = 10˚ and ranges from 0.05% (resp. 0.048%) to 0.79% (resp.
0.95%) when α = 60˚. It must be noted that the results obtained analytically remain acceptable
since the absolute relative error with respect to Zhou’s results - which are nearly concident with
the ”exact” ones - does not exceed about 1.5%: such small error is likely due to the factor of the
weight component parallel to the cable chord accounted in Zhou’s model and neglected in the
present formulation.

Figure 2: Relative errors εr(%) related to the 1st and 2nd dimensionless frequencies Ω1,2 with re-
spect to results obtained by both Galerkin and Zhou’s methods and presented in [3] for inclined
cables with: (a) α = 10˚; (b) α = 60˚

4 CONCLUSION

A general catenary-based model is developed analytically for the transverse linear free un-
damped vibrations of shallow/non shallow arbitrarily inclined cables. The exactitude of the pro-
posed solution is exhibited by a maximum absolute relative errors |εr| = 2.88% and |εr| ' 1.5%
calculated with respect to the exact results respectively for non-shallow horizontal cables (τ = 2.5)
and taut inclined cables.
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