


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conference Objectives  

This Euro-Mediterranean conference brings together researchers from 
the worldwide scientific community, to discuss about the major advances in 
the field of Vibrations, Acoustics and Vibroacoustics. It addresses both 
theoretical (analytical and numerical) and experimental methods in these topics 
by gathering applied mathematicians, mechanicians and acousticians. 

Following the 2013 edition, Medyna 2017 is an opportunity to discuss current 
issues, to exchange ideas and to present your latest researches in this area, but 
also a place for exchanges and networking. 

Conference topics 

This 2nd edition of the Euro-Mediterranean Conference on Structural 
Dynamics and Vibroacoustics focuses on the following topics : 
 
Damping, dissipation & vibroacoustic control 
Nonlinear dynamics 
Smart materials & structures 
Inverse problems 
Reliability, robustness & uncertainties management 
Computational techniques and reduced order modeling 
Composite & jointed structures 
Periodic structures & metamaterials (Special Session: ITN EJD VIPER) 
Mid-high frequencies & SHM 
Machines, diagnosis and rotordynamics 
Civil engineering  



 

 
 
Scientific Committee 

Adnan Akay 

Makrem Arfaoui 

Pierre Argoul 
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Claude Boutin 
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Hervé Lissek 

Brian Mace 
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Anders Nilsson 
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Massimo Ruzzene 

Rubens Sampaio 

Fabrizio Scarpa 
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Jing Tian 

Bernard Troclet 

Jun Yang 

Abdelmalek Zine 

 

  



 

	

  

 

The 2nd edition of MEDYNA brought together 96 attendants in Sevilla 
from 12 countries (Belgium, Brazil, Canada, France, Germany, Italy, 
Morocco, Spain, Switzerland, Tunisia, Turkey, United Kingdom). 

 
The Best Student Communication Award was delivered to Thibaut 
GRAS for the paper untitled “Wave finite elements - finite elements 
coupling to compute the dynamic response of an heterogeneous railway 
track” by Thibaut Gras, Mohamed-Ali Hamdi, Mabrouk Bentahar, Samir 
Assaf. 

 



 

 

 

   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

Organizing Committee 

Pedro Galvin, Juana Mayo, Mario Solís, 
Daniel García Vallejo 

Local committee 

Zsoka Bori, Christine Froidevaux, Isabelle 
Navarro, Hélène Schoch, Christelle 
Tisserand 

Registrations, administrative support 

Jean-François Deü Best communication award 
organization 

Olivier Bareille, Morvan Ouisse Web site & Program 
Adrien Pelat Reviewing 
Simon Chesné, Kerem Ege Proceedings Edition 
 

The Conference Board 

Morvan Ouisse (FEMTO-ST, France) General Chair 
Olivier Bareille (LTDS – ECL, France) General Co-Chair 
Faouzi Lakrad (Morocco) Regional Co-Chair - Morocco 
Tahar Fakhakh (ENIS, Tunisia) Regional Co-Chair - Tunisia 
Jaime Domínguez Abascal (U. Sevilla, Spain) Regional Co-Chair - Spain 
Nicolas Peyret (SUPMECA, FR) Organizing Committee Co-Chair 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keynote lecture 

 

  

Sondipon Adhikari - Swansea University (UK) - Homogenisation and dynamics of randomly 
irregular metamaterial 

  
Abstract: Metamaterials based on hexagonal periodic cells (honeycombs) have gained considerable 
attention in recent years. This can be an advanced material due to its capability of meeting high 
performance requirements in various critically desirable application-specific parameters. These 
structural assemblies not only make an efficient use of material, but are also characterized by interesting 
dynamic and wave propagation properties. A semi-analytical formulation has been developed for wave 
propagation in irregular honeycombs. Spatial structural irregularity of hexagonal lattices has been 
considered. There are few scientific literatures available concerning analysis of wave propagation in 
regular honeycombs. However, due to inevitable uncertainties associated with manufacturing and 
service conditions, honeycomb lattices may not be always perfectly regular. The effect of spatially 
random structural irregularity in wave velocities of such irregular honeycombs will be discussed. The 
nature of so called ‘pass band’ and ‘stop bands’ due to irregularities will be explained. 

Prof Adhikari is the chair of Aerospace Engineering in the College of Engineering of Swansea 
University. Currently he is a Wolfson Research Merit Award holder from the Royal Society. He 
received his PhD in 2001 from the University of Cambridge (in Trinity College). He was an 
Engineering and Physical Science Research Council (EPSRC) Advanced Research Fellow and winner 
of the Philip Leverhulme Prize (2007). He was a lecturer at the Bristol University and a Junior Research 
Fellow in Fitzwilliam College, Cambridge. He was a visiting Professor at the Carleton University, The 
University of Paris East and a visiting scientist at the Los Alamos National Laboratory. From 2015 he 
has been a Distinguished Visiting Professor at the University of Johannesburg. 

 His research areas are multidisciplinary in nature and include uncertainty quantification in dynamic 
systems, computational nanomechanics (nanotubes, graphene, nano-bio sensors), dynamics of 
complex systems, inverse problems for linear and non-linear dynamics and vibration energy harvesting. 
He has obtained more than £1.5M of competitive research funding as principal investigator, published 
four books, 251 international journal papers and over 150 conference papers in these areas. His works 
have been widely cited (over 7000 citations and a H-index of 45 in Google scholar) in the scientific 
community. 

 

Professor Adhikari is in the editorial board of 17 international journals, research grant reviewer of 15 
funding councils and served in over 40 Scientific and Technical Committees. He is an associate Fellow 
of American Institute of Aeronautics and Astronautics (AIAA) and a member of AIAA Non-
Deterministic Approaches Technical committee (NDA-TC). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
  
Mohamed Belhaq - University Hassan II of Casablanca (MA) - On the 
stability loss of limit cycle oscillations near strong resonances: 
synchronization and heteroclinic bifurcation 
  
Abstract: In self-excited nonlinear oscillators subjected to harmonicforcing, frequency-locking 
can occur near strong resonances. This phenomenon results from synchronization between the 
frequency of theforcing and the frequency of the limit cycle oscillation leading to frequency-locked 
motions for which the response of the system follows the forcing frequency. 
In the case of 1:4 resonance, which is considered as one of the unsolved problem in nonlinear 
dynamics  the limit cycle loses its stability at the synchronization via heteroclinic bifurcation. 
Usually, the transition between quasi-periodic and synchronized motions occurs via heteroclinic 
connections at two different frequencies causing hysteresis and bistability. Therefore, analytical 
approximation of heteroclinic bifurcations near the 1:4 resonance is of great importance since 
they determine the locations at which the frequency-locked motion takes place. 
The existence of heteroclinic orbits in ordinary differential equations corresponds to the existence 
of coherent structures such as solitons and fronts in certain partial differential equations. For 
instance, they form the profiles of traveling wave solutions in reaction–diffusion problems and 
spatially localized post-buckling states in static dynamics. Also, heteroclinic orbits correspond to 
the onset of various types of synchronization in certain problems in physics and biology. 
Therefore, one of the challenging problems is the analytical capture of the heteroclinic 
bifurcations location near the strong resonances.  To the best of our knowledge, rigorous analytical 
expressions of heteroclinic bifurcation near these resonances have not been obtained, only 
numerical methods have been performed. In this talk, recent analytical methods to capture 
approximation of such heteroclinic bifurcations in the problem of stability loss of limit cycle 
oscillations near the 1:4 resonance will be presented. The problem of 1:3 resonance will be also 
discussed. 
*  Joint work with W. Qin, K.W. Chung and A. Fahsi 
  
Mohamed Belhaq is Professor of Mechanics at University Hassan II-Casablanca. He received his 
Ph.D. at the University Paul Sabatier, France. He has been a visiting professor and lecturer at FU 
Berlin, University of Sevilla, University of L'Aquila, EC Lyon, INSA Lyon, UC Madrid, Military 
University of Warsaw, University of Munich, Cornell University, Virginia Tech University, Perdue 
University, Indiana State University and University of Jordan. Belhaq received two Fulbright 
Scholarships for conducting research at Cornell University and at Virginia Tech University and 
has been DAAD scholar at FU Berlin. He is in the editorial board of several international journals 
and serves as an Associate Editor to the Journal of Vibration and Control. Belhaq is a member of 
the International Research Center for Mathematics & Mechanics of Complex Systems 
(M&MoCS). He edited two books, published 124 papers in leading journals of mechanics and 
nonlinear dynamics, and he contributed in many international conferences. 
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Keynote lecture 

  
  
  
José Luis Escalona - University of Sevilla (SP) - Multibody modeling and 
simulation of the dynamics of railroad vehicles and tracks 
  
Abstract: Computational analysis of the dynamics of railroad vehicles is becoming an essential tool 
for this industry. Vehicle designers, rolling stock manufactures and railroad administrations benefit 
from the special modeling tools provided by the different railroad multibody softwares that are 
present in the market. Railroad dynamics is nowadays a sub-field of multibody dynamics that is 
characterized by the use of special algorithms for the treatment of the track geometry and the wheel-
rail interaction. 
This presentation shows the theoretical foundations of these algorithms. Railroad vehicles have been 
traditionally designed using linearized equations that uncouple the longitudinal, lateral and vertical 
dynamics. Linear models can be used to find a first approximation of the response of the vehicle to 
the track geometric irregularities, the lateral stability or the curving behavior. Linear models are based 
on the kinematics of the conical wheels, linear creep wheel-rail forces and the vehicle is considered 
as a collection of rigid bodies connected by springs and dashpots. 
On the other hand, multibody models of the railroad vehicles and track take into account the complex 
wheel-rail contact geometry and their normal and tangential interaction forces. The railroad vehicle 
bodies are assumed to be connected by kinematic joints and the can be considered as deformable. 
These modeling capabilities provide a more detailed insight into the vehicle dynamics at the expense 
of much longer computational analysis. However, special techniques like the use of trajectory 
coordinates or contact lookup tables alleviate this problem without significant reduction in accuracy. 
This presentation shows the modelling keys for the real-time simulation of railway vehicles using 
multibody dynamics that can be used in on–board applications. 
  
José L. Escalona is professor of Mechanical Engineering at the University of Seville, Spain. His 
research fields are Flexible Multibody Dynamics and Railway Dynamics. He received his degree in 
Mechanical Engineering and Ph.D. at the University of Seville. He has been Fulbright scholar at the 
University of Illinois at Chicago, research scholar at the University of Stuttgart and visiting professor 
at Lappeenranta University of Technology. He is associate editor of the ASME Journal of 
Computational and Nonlinear Dynamics, member of the scientific board of the International Journal 
of Railway Technology, Secretary of the IFToMM Committee for Multibody Dynamics and member 
of the ASME Committee for Multibody and Nonlinear Dynamics. Escalona has published 36 journal 
papers and over 60 conference papers. Escalona is also founder of the spin-off company 
“virtualmech”. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

This forum session will be the opportunity for the conference attendes to acknowledge Professor 
Hamdi's contributions in the field of vibroacoustics. Some researchers who have close association with 
Prof. Hamdi, past and present collaborators, will participate to this forum, including: 

 - Noureddine Atalla (GAUS / CA) - Introduction 

 - Claude Lesueur (video only) (ISAT / FR) 

 - Mohamed Ali Hamdi (UTC / FR)  

 - Jean-Michel Ville (UTC / FR)   

- Christian Glandier (Daimler-Benz AG / DE)  

 - Marc Anciant (ESI Group / FR)  

 - Thibaut Gras (UTC / FR)  

 - Gérard Borello (InterAC / FR) 

 - Bernard Troclet (Airbus Safran Launchers / FR)  

 - Bryce Gardner (ESI Group / FR)  

Mohamed-Ali Hamdi is Professor at the University of Technology of Compiegne (UTC, France) since 
1978. Doctor Es-sciences (1982), Doctor Engineer (1978) and Mechanical Engineer of “Ecole Nationale 
Supérieure des Arts et Métiers (Angers 71-74, Paris 1975)”. 

Known as worldwide expert in computational vibro-acoustics. He developed numerical methods based 
on Boundary and Finite Element Methods (BEM-FEM) for solving noise & vibration problems 
encountered in aerospace, aeronautic and ground transportation industries. He supervise 27 PhD’s and 
published over 100 scientific papers. 

He founded in 1986 STRACO (STRuctural ACOustics), a Technology Transfer company spin-off of 
his research team at UTC, specialized in development of Vibro-Acoustic (VA) Computer Aided 
Engineering (CAE) Software tools (RAYON® BEM-FEM Solvers) dedicated to modeling and solving 
of Noise, Vibration and Harshness (NVH) problems. STRACO has been acquired early 2001 by ESI 
Group, a top 5 worldwide software editor leader, specialized in virtual prototyping and virtual 
manufacturing. Since 2001 Professor Hamdi is acting as Scientific Director of the Vibro-Acostic 
Software Branch of ESI Group. 

He has been awarded by the “National Order of Merit” in Education and Sciences in 1996 and by the 
Award Technology Transfer University-Industry of the French Acoustic Society in 2008. 

Special forum session 

"In honour of Prof. Mohamed Ali Hamdi" (UTC / FR) 

organized by Noureddine Attala (GAUS / CA) 



Tuesday, April 25th - morning

08:45 - 09:00

09:00 - 09:40

09:00 - 09:40

  

09:40 - 10:20

10:20 - 12:40
Computational techniques & Reduced Order Modeling
Chair : Jean-François Deü

10:20 - 12:40
Periodic structures and metamaterials (Special Session: ITN EJD VIPER)
Chair : Mohamed Ichchou

10:20 - 10:40 › A fixed point algorithm and model reduction in jointed structures simulation - 
Nicolas Peyret, Gael Chevallier, Anthony Meurdefroid

10:20 - 10:35 › Aerodynamic Loading of Periodic Structures - Fabrizio Errico, Mohamed Ichchou, Olivier 
Bareille, Sergio De Rosa, Francesco Franco

10:40 - 11:00
› Vibroacoustic control of double-panel structures using viscoelastic and 
piezoelectric materials - a finite element reduced order modeling - Walid Larbi, Jean-
François Deü, Roger Ohayon

10:35 - 11:00
› First literature review for the analysis of quasi-periodicity variability effects and 
modeling strategies - Safiullah Timorian, Sergio De Rosa, Franco Francesco, Morvan Ouisse, Noureddine 
Bouhaddi

11:00 - 11:20
› Simulation of rack-pinion gears in steering systems using elastic multibody 
models - Christian Pfister, Jens Pfister, Peter Eberhard

11:00 - 11:15
› Kirigami inspired natural fibre cellular structures for future vibroacoustics 
applications - Simone Del Broccolo, Marc-Antoine Campana, Rita Palumbo, Yousef Dobah, Fabrizio Scarpa, 
Morvan Ouisse, Mohamed Ichchou

11:20 - 11:40
› Time domain finite element analysis of structures with fractional viscoelastic 
damping using time-diffusive scheme - Lucie Rouleau, Jean-François Deü, Denis Matignon

11:15 - 11:30
› A literature review for the analysis of viboracoustic properties of periodic 
inclusions in porous materials - Dario Magliacano, Morvan Ouisse, R. Chaléat, Abdelkrim Khelif, 
Sergio De Rosa, Francesco Franco

11:40 - 12:00 i› Extension of the variational theory of complex rays for heterogeneous media - 
Herve Riou, Hao Li, Pierre Ladevèze

11:30 - 11:45 › Multi-layer core topology systems - Nassardin Guenfoud, Mohamed Ichchou, Olivier Bareille, Wim 
Desmet, Bert Pluymers

12:00 - 12:20
› A spectral boundary element approach to represent scattered waves in 
unbounded acoustic regions - F.J. Cruz-Muñoz, Antonio Romero Ordóñez, P. Galvín, A. Tadeu

11:45 - 12:00 › Industrial application of periodic structures to aircraft/launchers - Giovanni Tufano, 
Mohamed Ichchou, Olivier Bareille, Abdel-Malek Zine, Wim Desmet, Bert Pluymers

    12:00 - 12:15
› A literature review for the analysis of structured and unstructured uncertainty 
effects on vibroacoustic - Ravi Pratap Singh, Sergio De Rosa, Francesco Franco, Mohamed Ichchou, 
Olivier Bareille

  12:15 - 12:35
› Continuous description for the dynamic behaviour of 1d framed structures - 
Xiangkun Sun, Changwei Zhou, Mohamed Ichchou, Abdelmalek Zine, Jean-Pierre Lainé, Stéphane Hans, Claude 
Boutin

12:20 - 13:40

 Sala de 
G

rados
Opening Ceremony - Conference chairs

Keynote Lecture
Chair : Olivier Bareille

On the stability loss of limit cycle oscillations near strong resonances: synchronization and heteroclinic bifurcation - Mohammed Belhaq, Université de Casablanca, Faculty of Sciences, Casablanca, MAROC

Coffee break

 Sala de grados

Sala de Juntas



Tuesday, April 25th - afternoon

13:40 - 15:40
Nonlinear dynamics
Chair : Mohamed Belhaq

13:40 - 15:40
Smart materials & structures for vibroacoustics
Chair : Simon Chesné & Hervé Lissek

13:40 - 14:00 › Dynamical regimes for a time-correlated randomly excited bouncing ball model - 
Joel Perret-Liaudet, Chaima Zouabi, Julien Scheibert

13:40 - 14:00 › Energy harvesting in a nonlinear harvester under modulated delay amplitude  - 
Zakaria Ghouli, Mustapha Hamdi, Faouzi Lakrad, Mohamed Belhaq

14:00 - 14:20
› Vertical dynamics of two sliding rough surfaces : comparison between numerical 
and analytical approaches to describe the excitation source - Nicolas Ponthus, Julien 
scheibert, Joel Perret-Liaudet

14:00 - 14:20
› Design and experimental validation of an active acoustic liner for aircraft engine 
noise reduction - Gaël Matten, Morvan Ouisse, Manuel Collet, Sami Karkar, Hervé Lissek, Romain 
Boulandet, Marc Versaevel

14:20 - 14:40
› On the Wet Belt Squeal: Characterization of the Mechanical Vibration and 
Influence of the Mechanical Properties of the Belt on Friction-Induced Instabilities - 
Simon Gatignol, Thierry Desmassougne, Alain Le Bot

14:20 - 14:40 › Shunted Piezoelectric Trap Device to Enhance Energy Harvesting - Fabien Maugan, 
Kaijun Yi, Mélodie Monteil, Simon Chesne, Manuel Collet

14:40 - 15:00
› Analysis of large amplitude oscillations of simply supported beams through the 
use of the Nonlinear Normal Modes (NNM) method - Daniel García-Vallejo, Jaime 
Domínguez, Javier González Carbajal 

14:40 - 15:00
› Vibration reduction of composite plates with shunted piezopatches: analytical 
modeling and numerical validation - Amirreza Aghakhani, Murat Gozum, Ipek Basdogan

15:00 - 15:20
› Analysis of nonlinear and non-smooth dynamics of a self-oscillating series 
resonant inverter - Enrique Ponce, Abdelali El Aroudi, Luis Benadero

15:00 - 15:20 › Phase compensator for hyperstable hybrid mass damper - Simon Chesne, Christophe 
Collette

15:20 - 15:40
› Geometrically non-linear vibrations of beams carrying a point mass and 
restrained by translational and rotational springs at the ends - Adri Ahmed

15:20 - 15:40
› Structural health monitoring of a smart composite structure with a Time-of-Flight 
method - Xianlong Chen, Yann Meyer, Rémy Lachat, Morvan Ouisse

15:40 - 16:20

16:20 - 17:40
Nonlinear dynamics
Chair : Mohamed Belhaq

16:20 - 17:00
Smart materials & structures for vibroacoustics
Chair : Simon Chesné & Hervé Lissek

16:20 - 16:40 › Modal interactions in a two-nanomechanical-resonator array - Clément Grenat, 
Sébastien Baguet, Régis Dufour, Claude-Henri Lamarque

16:20 - 16:40
› Bayesian Control of a Helicopter Main Gearbox Semi-active Suspension System - 
Experiments on a quarter-suspension prototype - Jonathan Rodriguez, François Malburet

16:40 - 17:00 , › Geometrically nonlinear of orthotropic plates using semi-analytical method - 
Hanane Bhar, Omar Baho, Rhali Benamar, Bilal Harras

16:40 - 17:00
› Design of active multiple-degrees-of-freedom electroacoustic resonators for use 
as broadband sound absorbers - Hervé Lissek, Etienne Rivet, Sami Karkar, Romain Boulandet

17:00 - 17:20
› An effective formulation and a physical discrete model for geometrically 
nonlinear transverse vibrations of a symmetrically laminated composite beam - 
Abdellatif Rahmouni, Rhali Benamar

17:20 - 17:40 › Geometric nonlinearties effect on cable linear vibrations - Achref Mansour, Giuseppe 
Rega, Othman Ben Mekki, Sami Montassar

20:30 - 22:00

 Sala de G
rados

Sala de Juntas

Sala de G
rados

Sala de Juntas

Coffee break

Welcome Reception



Wednesday , April 26th - morning

08:30 - 09:10

08:30 - 09:10

09:10 - 10:50
Mid-High Frequencies & SHM
Chair : Alain Le Bot

09:10 - 10:50
Machines, diagnosis & Rotordynamics
Chair : Jarir Mahfoud & Patrick Keogh

09:10 - 09:30
› Vibro-acoustic energy flow on a car floor structure using dynamical energy 
analysis - Timo Hartmann, Gregor Tanner, Gang Xie

09:10 - 09:30 › External disturbance rejection for compressors on active magnetic bearings - 
Angelo Bonfitto, Andrea Tonoli, Nicola Amati

09:30 - 09:50
› High-frequency structure- and air-borne sound transmission for a tractor model 
using dynamical energy analysis- Gregor Tanner, Timo Hartmann, Satoshi Morita

09:30 - 09:50
› On the use of flexibly-mounted, internal-stator magnetic bearings for vibration 
control of a flexible rotor- Christopher Lusty, Patrick Keogh

09:50 - 10:10 › Simulation of finite-sized dynamic systems using wave transmission method - 
Gerard Borello

09:50 - 10:10
› The induced by meshing stiffness variation dynamics of planetary gears using an 
iterative spectral method - Joel Perret-Liaudet, Huiyang Xu, Jessica Neufond, Emmanuel Rigaud

10:10 - 10:30
› Uncertainty quantification in mid-frequency range simulations using the 
statistical modal energy distribution analysis - Emeline Sadoulet-Reboul, Kendra Van Buren, 
Morvan Ouisse, Scott Cogan, Laurent Maxit

10:10 - 10:30
› Stability of rotating machine supported by active magnetic bearings during base 
motion - Jarir Mahfoud, Clément Jarroux, Régis Dufour, Franck Legrand, Benjamin Defoy, Thomas Alban

10:30 - 10:50 › Statistical energy analysis, assumptions and validity - Alain Le Bot, Nicolas Totaro, Thibault 
Lafont

10:30 - 10:50
› The dynamics, stability and control of rotor touchdown in active magnetic 
bearing systems - Patrick Keogh, Chris Lusty

10:50 - 11:20

11:20 - 12:40
Mid-High Frequencies & SHM
Chair : Alain Le Bot

11:20 - 12:40
Inverse problems in vibroacoustics
Chair : Nabil Gmati & Antonio González

11:20 - 11:40
› Wave conversion process in lightweight structures: diffusion through defects in 
the transition bandwidth - Christophe Droz, Philip Becht, Bert Pluymers, Wim Desmet

11:20 - 11:40
› Numerical model to simulate the forward and reverse sound transmision 
mechanism in hearing - Antonio Gonzalez-Herrera, Javier Camacho, Jose Garcia-Manrique

11:40 - 12:00 › A lagrangian based damage indicator for use on complex structures - Yi Hui, Hian Lee 
Kwa, Olivier Bareille, Mohamed Ichchou

11:40 - 12:00 › Timpanic membrane prestrain evaluation based on the dynamic response - 
Antonio Gonzalez-Herrera, Luis Caminos

12:00 - 12:20 › MUSIC algorithm for vibro-acoustic defect detection - Philip Becht, Elke Deckers, Claus 
Claeys, Bert Pluymers, Wim Desmet

12:00 - 12:20
› Identification of structural forces from acoustic measurement using the inverse 
simplified energy method - Mohamed Amine Ben Souf, Ahmed Samet, Olivier Bareille, Tahar Fakhfakh, 
Mohamed Ichchou, Mohamed Haddar

12:20 - 12:40
› A discrete model for vibration of cracked beams resting partially elastic 
foundations - Rhali Benamar, Ahmed Khnaijar

12:20 - 12:40
› Inverse characterization of sandwich structures using single-shot wave speed 
measurements - Christophe Droz, Olivier Bareille, Mohamed Ichchou

12:40 - 14:00

Sala de Juntas

Sala de G
rados

Sala de G
rados

Sala de Juntas

Coffee break

Lunch

 Sala de 
G

rados

Multibody modeling and simulation of the dynamics of railroad vehicles and tracks - José Luis Escalona, Universidad de Sevilla

Keynote Lecture
Chair : Daniel García Vallejo



Wednesday , April 26th - afternoon

14:00 - 16:00

14:00 - 14:10

14:10 - 14:20

14:20 - 15:00

15:00 - 15:20

15:20 - 15:40

15:40 - 16:00

16:00 - 16:30

16:30 - 18:10

16:30 - 16:50

16:50 - 17:10

17:10 - 17:30

17:30 - 17:50

17:50 - 18:10

20:30 - 23:00

› Prediction of acoustic and shock responses of spacecrafts over broadband frequency range - Gerard Borello, InterAC

 Special forum session In honour of Prof. Mohamed Ali Hamdi
Chair : Noureddine Atalla 

› Introduction - Noureddine Attala, Department of Mechanical Engineering, Université de Sherbrooke

› Video message for Prof. Mohamed Ali Hamdi - Claude Lesueur, Département de Recherche en Ingénierie des Véhicules pour l'Environnement

Sala de G
rados
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ABSTRACT

A three dimensional viscoelastic model at finite strain representing nonfactorizable behaviour
of rubber like materials is proposed. The model is based upon the internal state variables
approach within the framework of rational thermodynamics such that the second principle of
thermodynamics is satisfied. Motivated by experimental and rheological results, the nonfac-
torizable aspect of the behavior was introduced via strain dependent relaxation times which
leads to a reduced time with a strain shift function. The identification of the models parame-
ters and its capacity to predict the nonfactorizable behaviour of rubber like materials with the
multi-integral viscoelastic model of Pipkin is addressed.
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1 INTRODUCTION

It is well known that rubber-like materials exhibit nonlinear viscoelastic behavior over a wide
range of strain and strain rates confronted in several engineering applications such as civil en-
gineering, automotive and aerospace industries. Further, the time dependent properties of these
materials, such as shear relaxation modulus and creep compliance, are, in general, functions of
the history of the strain or the stress [1]. Therefore, in a wide range of strain a linear viscoelas-
ticity theory is no longer applicable for such material. Hence, new constitutive equations are
required to fully depict the behavior of rubber-like. In this work we shall develop a nonlinear
model at finite strain for nonfactorizable viscoelastic materials within the framework of rational
thermodynamics and the approach of internal state variables, see [2], [3] and [4] taking into
account the dependence of the time dependent functions upon the state of the strain. The identi-
fication of several functions in the model to the multi-integral model of Pipkin [5] is performed
with Matlab software. This paper is organized as follows: in section 2 the mechanical frame-
work and the model are recalled. In section 3 a brief review of the model by [5] is presented
and the results of the identification are highlighted.

2 MECHANICAL FRAMEWORK AND CONSTITUTIVE EQUATIONS

Consider a viscoelastic material with reference placement ⌦0 in the reference configuration C0.
It occupies at the time t the placement ⌦ in the deformed configuration C

t

. Let ' denote a
macroscopic motion between the two configurations, which maps any point X in the reference
configuration C0 to the point x in the deformed configuration. Let F (X, t) = @x/@X be the
deformation gradient tensor. Likewise, let J = det (F ) be the jacobian of the deformation
gradient tensor. From the deformation gradient F (X, t), the right and left Cauchy-Green strain
tensors C = F tF and B = FF t are obtained. The formulation of the constitutive equations
in the nonlinear range of behavior is based upon the decomposition of the deformation gradient
tensor F (X, t) into volumetric and isochoric parts such that:

F̄ = J�1/3F where det
�
F̄
�

= 1 (1)

in which F̄ is the isochoric part of the deformation gradient tensor, the right and left Cauchy-
Green strain tensors associated with it reads:

C̄ = F̄ tF̄ = J�2/3C, B̄ = F̄ F̄ t = J�2/3B (2)

The free energy density according to [2] is expressed as follows:

 
�
C̄, Q

�
= U0 (J) +  ̄0

�
C̄
�

� 1

2
Q : C̄ +  

I

(Q) (3)

in which Q is a second order tensor internal variable akin to the second Piola-Kirchhoff stress
tensor, its evolution law is expressed as follow:

@Q

@⇠
+

1

⌧
Q =

�

⌧
DEV

"
2
@ 0

�
C̄
�

@C̄

#
with ⇠ (t) =

Z
t

0

dt0

a
�
C̄
� (4)

in which DEV (•) = (•) � 1
3 [C : (•)] C�1 denotes the deviator operator in the reference con-

figuration. � and ⌧ are the viscoelastic parameter and the relaxation time of the Prony series
respectively, in relation 4 ⇠ denotes the reduced time which is an increasing function of real
time t and a(C̄) is a positive function of the left Cauchy-Green strain tensor called a strain-shift

2

2
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function. Application of the Clausius-Duhem inequality and the resolution of the evolution
equation 4 along with the form of the free energy density of equation 3 lead to the expression
of the second Piola-Kirchhoff stress tensor.

S = J�2/3

Z
⇠

0

G (⇠ � ⇠0)
@

@⇠0 DEV

 
2
@ 0

�
C̄
�

@C̄

!
d⇠0 + JpC�1 (5)

3 IDENTIFICATION OF THE PIPKIN MODEL

3.1 Pipkin isotropic model

Pipkin [5] proposed a third order development of the tensorial response function Q for an
isotropic incompressible material. The principle of material indifference requires that the Cauchy
stress tensor takes the following form:

� = RQRt + pI (6)

R is the rotation tensor obtained from the polar decomposition of the transformation gradient
tensor F and p is the indeterminate parameter due to incompressibility. The third functional
development of Q reads

Q (t) =
R

t

0 r1 (t � t0)Ė (t0) dt0 +
R

t

0

R
t

0 r2(t � t0, t � t00)Ė (t0) Ė (t00) dt0 dt00 +
R

t

0

R
t

0

R
t

0 r3 (t � t0, t � t00, t � t000) tr
h
Ė (t0) Ė (t00)

i
Ė (t000) dt0dt00dt000 +

R
t

0

R
t

0

R
t

0 r4 (t � t0, t � t00, t � t000) Ė (t0) Ė (t00) Ė (t000) dt0dt00dt000
(7)

r
i

i = 1...4 are the relaxation kernels expressed by a decaying exponential functions and Ė (t)
is the time derivative of the Green-Lagrange deformation tensor E = 1/2 (C � I).

3.2 Identification of the model’s functions

The free energy density  0, the viscoelastic kernel G(⇠) and the reduced time ⇠(t) of relation
5 are identified separately. To this end data in pure shear and simple extension were generated
following relations 6 and 7. Equilibrium tests of simple extension and pure shear are used in
the identification of  0, relaxation tests with small level of strain in pure shear are used in the
identification of G(⇠) and monotonic tests of simple extension are used in the identification of
⇠(t) and then the whole identification procedure is validated by predicting the response of the
model to a monotonic test of pure shear. Each identification procedure turns out to a least square
minimization problem. The results of this identification are plotted in figure 1 in terms of the
hyperelastic response and in figure 2 in terms of the reduced time function and the predicted
response of the model in pure shear for two different strain rates: "̇ = 100% and "̇ = 200%.

4 CONCLUDING REMARKS

A nonlinear viscoelastic model at finite strain to describe nonfactorizable behavior of rubber
like materials has been proposed. The model is formulated using the decomposition of the
deformation gradient tensor which makes it applicable to both compressible and incompressible
materials. The identification of the model’s functions to the multi-integral isotropic model of
Pipkin [5] is highlighted and a significant potential of the model to track the response of this
model is obtained.

3

3
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Figure 1. Equilibrium response for the Pipkin model and the Mooney-Rivlin model [6]
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ABSTRACT

The predictive capabilities of some integral-based finite strain viscoelastic models under the
time-strain seperability assumption have been investigated through experimental data for mono-
tonic, relaxation and dynamic shear loads, in time and frequency domains. This survey is
instigated by experimental observations on three vulcanized rubber material intended for an
engineering damping application. Models under consideration are Christensen, Fosdick & Yu,
a variant of BKZ model and the Simo model. In the time domain, for each test case and for each
model, the nominal stress is hence compared to experimental data, and the predictive capabil-
ities are then examined with respect to three polynomial forms hyperelastic potentials. In the
frequency domain, the predictive capabilities have been analysed with respect to the frequency
and predeformation effects.
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1 INTRODUCTION

Elastomeric compounds are widely used in industry for their mechanical properties particularly
their damping capabilities e.g tires, shock-absorbing bushes, construction industry, aerospace
applications... To design industrial compounds efficiently, it is of major importance to be able
to predict the impact of the nonlinearity effects on the products, and estimating the damping
capability is a primary feature to be considered in many engineering applications. While many
contributions investigated either the purely elastic phenomena for elastomers at large deforma-
tions [1] or the viscoelastic phenomenon [2], the attention is here focused on the hysteritic time
dependent part of the response.
The objective of the current work is the analysis of the predictive capabilities of some heridi-
tary integral-based constitutive models in time and frequency domains, under the separability
assumption [3][4]. From an historically point of view, the constitutive theory of finite lin-
ear viscoelasticity [5] have been of a major contribution and is founded on an extension of the
Boltzmann superposition principle to finite strain. The stress quantity is decomposed to an equi-
librium part corresponding to the stress response at highly slow rate, and an overstress quantity
expressed as an heriditary integral including a measure of material’s memory through relax-
ation functions. Based on experimental observations, the time-strain separability or factora-
bility assumption [4] is frequently introduced in the formulation of finite strain viscoelasticity
constitutive models and afford a large theoretical simplicity.

2 MODELS UNDER CONSIDERATION

In the present work, some of major contributions finite strain viscoelastic models involving
heriditary integral have been considered under the seperability assumption, chosen so as to not
require a special identification procedure. All parameters have been identified using Abaqus
Evaluate Module. The models under consideration are: Christensen [6], Fosdick & Yu [7], a
variant of BKZ [8] and Simo Model [9]:
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is the deformation gradient. The right and left Cauchy-Green strain tensor
are consecutively C = FTF and B = FFT . The Green-Saint-Venant strain tensor is E =
1
2 (C � I). the hyperelastic free energy potential W = W (I1, I2) and I1 and I2 stands for the
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3 ON THE CAPABILITY TO PREDICT TIME-DEPENDENT EXPERIMENTS

3.1 Monotonic tests

(a) NeoHoohean
10 % min�1

(b) Mooney Rivlin
10 % min�1

(c) 2nd Ord. poly
10 % min�1

(d) 2nd Ord. poly
100 % min�1

Figure 1: BIIR
monotonic tension

The available experimental data are for an uniaxial tension test and a sim-
ple shear test, with different strain-rates. Considering purely hyperelastic
response, we make use of the equilibrium strain-stress curves for the iden-
tification of the hyperelastic potential. Herein, we made the choice on
the polynomial hyperelasic form and its particular cases NeoHookean and
Mooney-Rivlin. Considering viscoelastic phenomena, we identified the
prony series through normalized shear relaxation data.
The response of monotonic tension/shear nominal stress for bromobutyl
BIIR material are reported in Fig.1 . The considered models present the
capability to take into account a strain rate effect, with higher stain rates
leading to a higher stress at same deformation level. Considering a Neo-
Hookean or a Mooney-Rivlin hyperelastic potential, the predicted data are
seen to be non accurate, and all the models could not predict the second
inflection point. Considering the 2nd Order Polynomial hyperelastic poten-
tial, we observed that the Christensen model (1a) is seen to highly over-
estimate the nominal stress level for high strains, not to exceed 100% of
deformation. Fosdick & Yu model (1b) is seen to underestimate the stress
level for the three materials, and has the lowest stress level through all
models. Nevertheless, the predicted level is seen to be acceptable. Mean-
while, both BKZ (1c) and Simo (1d) models were able to give a better
approximation of the stress level. The prediction is quite good and the
predicted stress is in a good range.

3.2 Relaxation tests

The evaluation of the prony series is available in the abaqus evaluation
module for normalized shear stress relaxation experiments. The defor-
mation taken into account for shear relaxation tests is less than 50% of
deformation. For a very long relaxation time i.e t ! 1, the relaxation
equilibrium expression:

�Poly Equil

12 = 2
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2
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2
0 + C11�

2
0

�
�0 (2)

Comparison of models response is graphically shown in Fig. 2. We observed that the Neo-
Hookean hyperelastic potential, as well as Mooney-Rivlin, the models are seen to not well
predict the relaxation test data. The 2nd order Polynomial hyperelastic model offers the best
prediction for the long-term relaxation stress response and the measured error is of an accept-
able level. The major difference between models is seen for the hysteritic part. The Simo model
is seen to offer a good fidelity to approximate low times stress. Christensen and Fosdick &
Yu models underestimate the hysteritic stress level while the BKZ model is observed to highly
overestimate the instantaneous relaxation stress.

4 ON THE CAPABILITY TO PREDICT FREQUENCY-DEPENDENT EXPERIMENTS

The determination of the complex shear modulus was introduced by [6] and is a Fourrier trans-
form of the governing equations defined for a kinematically small perturbation about a pre-
deformed state. Since the available experimental data in the frequency domain are limited to

3
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(a) NeoHookean (b) Mooney-Rivlin (c) 2nd Order Polynomial

Figure 2: Relaxation response with different hyperelastic model: Material NR

30%, and the procedure is linearized for high order strains, a Mooney-Rivlin potential leads to
sufficient results. Therefore, we used the following state of loading:

�(s) = 0 s < 0 ; �(s) = �0 0 6 s 6 t0 ; �(s) = �0 + �
a

e(i!t) t0 6 s 6 t (3)

We assume that |�
a

| << 1 and that a steady-state solution is obtained. The dynamic stress has
the form:
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(!, �0) + iG
l
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where G
s

= < [G⇤(!, �0)] and G
l

= = [G⇤(!, �0)] are the shear storage and loss modulus.

(a) shear storage,
10% predeformation

(b) shear storage,
30% predeformation

(c) loss factor, 10%
predeformation

(d) loss factor, 30%
predeformation

Figure 3: NR/BIIR dynamic proper-
ties at different predeformation levels

As shows Fig 3, following observations have been
made for the shear storage modulus: Simo model have
shown an excellent approximation of the dynamic shear
storage modulus with respect to frequency and prede-
formationw while Christensen model underestimates
the shear modulus at 10% of deformations and over-
estimate the properties at higher predeformation: this
model was not able to predict the softening of the ma-
terial occuring with increasing predeformation level.
Fosdick and Yu model’s response underestimates the
materials response and the BKZ model’s response is
not in an acceptable range. Interested in the shear loss
factor, the frequency dependence of the compared mod-
els is pronounced, and all models are seen to offer a
good approximation of this factor. The Simo model
slightly underestimate the response, and the maximum
deviation is of about 10%. One can observe that al-
though the BKZ model could not predict the storage
modulus, is have shown the ability to well approximate
the damping of the materials.
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ABSTRACT 
 

 Transport industry and, more specifically, railway industry, is confronted with a permanent 
need of improvement of its products. The competitiveness of rolling stock does not come only from 
low-cost production, but also from well-calculated lifecycle costs. Nowadays, many contracts for 
railway operators include not only trains, but also maintenance services throughout its lifetime, 
which may reach 30% of global costs. Hence, deep knowledge about the system’s ageing is a strong 
asset to assess a good performance, both on quality of service and financial costs.  
 
 Rubber parts are widely used on railway technology because of their material properties, 
providing both mechanical stiffness and, to a certain extent, additional damping and vibration 
filtering. Contrary to metallic parts, whose mechanical characteristics remain relatively stable, 
rubber’s properties can change throughout a lifecycle, due to service loads and environmental 
influence. Such changes might have an impact on the system’s behaviour and lead to undesirable 
scenarii. For a given bogie model, we search to estimate the stiffness variation on some rubber 
parts, which are deemed relevant for safe operation. 
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1 SUMMARY 

The works on our project are carried out with a partnership with a rolling stock manufacturer. The 
article will explain briefly the current safety norms and constraints which apply to rolling stock. 
The link between safety assessment and mechanical characteristics will be addressed, outlining the 
need of thorough knowledge on the evolution of rubber’s mechanical characteristics. Evolution 
mechanisms will be described, as well as a strategy to study the impact of these changes on the 
pieces’ global characteristics. Finally, a recall on maintenance objectives will be outlined. 

2 SAFETY ASSESSMENT ON RAILWAY ROLLING STOCK 

Railway industry has to meet several safety norms to obtain the homologation of its products, 
allowing the exploitation of rolling stock on one or more networks. Compliance is assessed 
according to each country’s or operator’s legal frame, but a common basis is set up by UIC (French 
initials for “International Railway Union”) and EN European norms.  
 
 Accordingly to UIC 518 and its European transposition EN 14363, we carry out simulation 
tests on derailment aptitude, roll coefficient of the vehicle and safety assessment for dynamic 
behaviour. We use the MBS calculation software SIMPACK. Each test demands to meet several 
performance indexes, whose value depends on the mechanical characteristics of the system and 
which are limited by the norms stated above [2, 3]; among this indexes one can find: 
 

▪ ratio of lateral and vertical loads over a wheel, Y/Q [a-dimensional], lower than 1.2 ; 
▪ wheel lift, Δz [mm], lower than 5 mm; 
▪ roll coefficient of the carbody, SR [a-dimensional], depends on the train (e.g. trains with a 

pantograph must be below 0.21); 
▪ shift forces over an axle, ΣY [kN], given by the Prud’homme formula; 
▪ acceleration levels in both vertical and lateral directions in several positions, ÿ and �̈� [m/s2]. 

3 RUBBER SUSPENSION ELEMENTS 

The use of composed rubber parts on train suspensions began on the 1960’s and 1970’s. The main 
interest on this parts is that they can handle loads as good as a metallic part would do, with the 
additional advantage of an inherent damping behaviour. This parts play a key role on providing 
both structural strength on the system, as well as filtering properties for vibration purposes. Their 
structure can be very different, depending on the desired role: first examples came as stacked layers 
of rubber and steel, evolving to more complex forms like stacked-layer chevrons or conical rubber-
metal springs [1] (e.g. Figure 1, 1ary springs on Renfe CIVIA). 
 

 
Figure 1. Renfe CIVIA bogie featuring primary rubber elements [4]. 

 
 The bogie which we have chosen has several metallic-rubber parts. The knowledge from 
our partner states that rubber elements might increase their stiffness up to 30% during their lifecycle. 
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Thus, we have performed several simulations varying the characteristics of this elements, from +5% 
to +30% homogeneously over a whole train. The obtained results show that an increase of stiffness 
has an influence on the vehicle’s derailment aptitude, leading to higher values on the Y/Q ratio (see 
Graphic 1). Hence, we can state an upper boundary on the element’s stiffness to prevent the risk of 
non-compliance with safety norms. 

 
Graphic 1. Evolution of the derailment coefficient depending on the increase of stiffness. 

4 EVOLUTION ON MECHANICAL CHARACTERISTICS 

It is well-known that rubber is subjected to several phenomena which can affect its properties 
throughout time. In the case of railway applications, we can expect either an increase or a decrease 
of stiffness, which may come from faulty manufacturing or from changes within the rubber itself. 
Inherent changes might come from two sources: degradation due to mechanical loadings and 
chemical degradation due to environmental aspects (UV radiation, thermal cycles (-20°C, +55°C), 
humidity, grease, etc.). Thus, we propose a reference dissipative model permitting the description 
of the stiffness changes on new parts, under mechanical loads. 

4.1 Experimental observations: Payne and Fletcher-Gent Effects 

Elastomeric parts subjected to cyclical loading might experience several effects depending on the 
amplitude of the loads and on their material history. Although our suspension elements are NR 
based, their behaviour can be compared to that of another dissipative elastomer: silicone reinforced 
with silica particles. Tests performed on standard ISO 37 H2 samples have shown two phenomena, 
the effects Payne and Fletcher-Gent, which are most important to model the dissipative behaviour. 
▪ the Payne Effect is characterised as a softening of the material under increasing strain 

amplitude. This phenomenon is temperature-dependant; the material shows a loss of dissipative 
capacity and a lesser loss of stiffness due to strain amplitude at higher temperatures (see 
Graphics 2a and 2b). The rate of fillers within the material makes this effect more evident. 

▪ the Fletcher-Gent Effect is a strain-rate-dependent effect, which shows the softening of the 
material and the increase of its dissipative capacity under higher strain rates. Temperature has 
an influence as well on the dissipative capacity of the material and on its stiffness, which is 
lower at higher temperatures (see Graphics 3a and 3b). 

   
Graphics 2. Payne Effect. Left (a) decrease on stiffness; right (b) dissipative behaviour [5]. 
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Graphics 3. Fletcher-Gent Effect. Left (a) increase on stiffness; right (b) dissipative behaviour [5]. 

4.2 Building an elasto-dissipative phenomenological model 

A proper modelization of the suspension elements requires a model which can account for non-
linearity due to large strains, dissipative behaviour due to viscosity coupled with hyperelastic 
behaviour, plus a dynamic response over a wide range of frequencies, (in particular the Fletcher-
Gent effect) and the softening due to increasing strain amplitude (Payne Effect). The model that we 
propose is based on the thermodynamics of irreversible processes. Instead of choosing a discrete n-
branch model with each branch matching a relaxation time, we propose a statistical approach using 
a continuous model with two branches, as shown on figure 3a. 

  
Figure 3. Left (a), statistical model; right (b) model parameters to identify. 

The upper Poynting-Thomson branch accounts for the hyper-viscoelastic behaviour, with 
the free energy function 𝜓𝑒 + 𝜓𝑣 and the pseudo-potential of dissipation 𝜑0. The lower Bingham 
branch matches the hyper-visco-plastic characteristics of the material, with its own functions �̃� and 
�̃� biased by a weighing function which depends on a random variable ω. The chosen potentials are 
a Gent-Thomas or Neo-Hookean models for the hyperelastic branches; a quadratic form for the 
pseudo-potential of viscous dissipation; a perfectly plastic pseudo-potential for the slider element; 
and a Gaussian form for the distribution function combined with simple variations of Bingham 
characteristics according to the random variable ω. The model has 8 parameters to be identified. 

4.3 Identification of the model’s parameters 

The identification of these parameters is done through several successive steps. The hyperelastic 
parameters and the plasticity yield are pre-identified with quasi-static tests. Then, viscoelastic 
parameters are identified through multi-level relaxation tests. Last, several cyclic tests are 
performed at different strain rates, allowing the identification of the statistical parameters and the 
correction of the viscoelastic parameters determined before. 

 
Graphics 3. Left (a), pre-identification under quasi-static loading; middle (b) estimation of 

viscoelastic parameters; right (c) correction of the parameters with cyclic tests [6]. 
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Using the identified model, one can perform several simulations of the material’s behaviour 
and verify the fitness of the model with respect to the dynamic effects observed on the material. As 
shown on Graphics 4a and 4b, the model shows the decrease of stiffness with increasing strain 
amplitude which is characteristic of the Payne Effect, as well as the stiffening with increasing 
frequency, due to the Fletcher-Gent Effect. 

 
Graphics 4. Left (a) Payne Effect; right (b) Fletcher-Gent Effect [6]. 

5 CONCLUSION 

Maintenance optimisation depends, among others, on the suspension element’s lifecycle. Building 
a precise model of the material’s behaviour can allow to predict its evolution along its lifecycle.  
This knowledge is necessary to build calculation tools with a certain accuracy, which can provide 
some predictive assessment to complete the empirical expertise on lifecycle behaviour of rubber 
parts. Coupling the expected stiffness evolution of rubber parts with the operation boundaries of the 
system may show that overhaul delays can be extended accordingly with safety norms.  
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ABSTRACT 
 

The popular bouncing ball model, which consists in a ball submitted to the gravitational field and 
bouncing vertically on a vibrating plate with inelastic impacts, is under study in this paper. 
Contrary of most of studies witch assume a harmonic vertical motion of the plate, one considers 
random excitations of the ball induced by the plate motion. More precisely, we consider the dynamic 
behaviour of a revisited stochastic version of the bouncing ball model, by introducing the table 
displacement as a continuous time Gaussian random process with tunable correlation time. The 
memory effect of the excitation is then analysed, by investigating the dynamic behaviour through 
numerous numerical simulations. One shows that the dynamic behaviour is not only governed by 
the restitution coefficient at impacts and the dimensionless excitation amplitude level, but also by 
the correlation time of the excitation process. One highlights the relevant parameter that 
distinguishes the well-differentiated dynamic regimes. Quickly says, this dimensionless parameter 
depends for the essential from the bandwidth of the excitation signal. 
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1 INTRODUCTION 

The popular bouncing ball (BB) model, which consists in a ball submitted to the 
gravitational field and bouncing vertically on a vibrating plate with inelastic impacts, has been 
widely studied in the last decades. This is due to both its simplicity and the amazing richness of its 
dynamics, from harmonic to chaotic, through subharmonic and quasi-periodic responses. It is now 
one of the paradigms for nonlinear dynamics and chaos (see, e.g. [1, 2] for BB in textbooks). Most 
of the studies achieved to date consider harmonic vertical motion of the plate. On the contrary, few 
of them include random vibrations of the plate, in spite of its undeniable relevance. Moreover, the 
excitation induced by the plate motion at successive bounces is generally assumed to be a discrete 
Markovian memoryless stochastic process. However, the real plate motions are always 
characterized by a finite auto-correlation time 𝑡𝑐𝑜𝑟𝑟 below which the signal keeps memory of its 
previous values. The Markovian assumption of independent successive impacts corresponds to the 
fact that the ballistic flight time of the ball between two successive bounces is much larger than 
𝑡𝑐𝑜𝑟𝑟. This is the case with the so-called Chirikov conditions [3]. Conversely, for two bounces 
separated by a short flight time, the two relevant plate velocities can be strongly correlated. Thus, 
in regimes in which short flight times are dominant, the standard Markovian approach is expected 
to fail to capture the BB model dynamics.  

In this context, the main purpose of this study is to characterize the BB model dynamics 
with stochastic excitation, when memory effects cannot be neglected. 

2 THE REVISITED BOUNCING BALL MODEL 

Consider the popular BB model (see Figure 1) consisting on a point-like ball of finite mass bouncing 
vertically under the action of gravity, 𝑔, on an infinitely massive vibrating plate, the originality of 
our model is to introduce, for the vibrating plate, a correlated stochastic motion, ℎ(𝑡), with tunable 
correlation time, 𝑡𝑐𝑜𝑟𝑟. To this end, ℎ(𝑡) is obtained from an uncorrelated Gaussian white noise 
𝜓(𝑡), filtered by a second-order filter as 
 

ℎ̈ + 2𝜁Ωℎ̇ + Ω2ℎ = 𝜓(𝑡) (1) 

 
with Ω being the center frequency of the filter and 𝜁 its damping coefficient. Note that 𝜁 is related 
to the frequency contents of the signal because the bandwidth of its power spectrum density (PSD), 
𝑆ℎℎ(ω) is equal to 2𝜁Ω. The autocorrelation function < ℎ(𝑡)ℎ(𝑡 + 𝜏) > of ℎ is equal to 
𝜎ℎ

2 exp(−𝜁Ω|𝜏|) 𝑓(𝜏) with 𝑓 a periodic function and 𝜎ℎ the standard deviation of ℎ, so the 
correlation time can be defined as 𝑡𝑐𝑜𝑟𝑟 = 1/𝜁Ω . To avoid infinite energy in the acceleration signal 
the displacement is further filtered by a first-order low-pass filter with a cutoff frequency higher 
than Ω. Typical simulated PSDs are shown in Figure 2 for the two cases, narrow and broadband. 

  
Figure 1. Sketch of the bouncing ball (BB) model. 
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Narrow band process Broadband process 

  

  
 

Figure 2. Typical realizations of the dimensionless plate time-displacement and its power spectral 
densities (PSD): narrow and broadband cases.  

 
Now, for any generated excitation signal, we then solve the bouncing ball problem by 

calculating the values of the post impact velocity, 𝑣𝑛, and instant, 𝑡𝑛, of the all-successive impacts. 
In practice, we solve the following equations: 

𝑡𝑛+1 = 𝑡𝑛 + 𝜃𝑛 (2) 

𝑣𝑛+1 = −𝑒(𝑣𝑛 − 𝑔𝜃𝑛) + (1 + 𝑒)𝑤𝑛+1 (3) 

with 𝑒 the restitution coefficient introduced to take into account the partially inelastic impact 
characteristic, 𝑤𝑛 the plate velocity at impact, and 𝜃𝑛 the flight time obtained from the following 
equation: 

−
1
2

𝑔𝜃𝑛
2 + 𝑣𝑛𝜃𝑛 + ℎ𝑛 − ℎ𝑛+1 = 0 (4) 

In fact, Equations (2) and (3) define the classical Poincaré map for the BB model. A 
dimensional analysis shows that the system is governed only by three dimensionless parameters, 
i.e. the restitution coefficient 𝑒, the reduced plate acceleration defined by Λ = 𝜎𝑤

2 /𝑔𝜎ℎ and the 
dimensionless correlation time 𝜏𝑐𝑜𝑟𝑟 = Ω𝑡𝑐𝑜𝑟𝑟. On this basis, we have performed simulations for a 
large number of values of this triplet [4]. 

3 RESULTS 

Typical probability density functions (pdf) of the dimensionless take-off velocity 𝑉𝑛 = 𝑣𝑛/𝜎𝑤 are 
shown in Figure 3. Wood and Byrne have studied the case of a completely uncorrelated Markovian 
excitation [5], and their results (velocity quoted 𝑉𝑊𝐵) are used as a reference to highlight the 
differences brought by our improved model which includes the correlation in the excitation. As we 
can see, memory effects become negligible when individual flight times are larger than the 
correlation time. This case is favoured for large excitations Λ and/or short correlation time 𝜏𝑐𝑜𝑟𝑟.   
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Figure 3. Typical pdf of the dimensionless take-off velocity for selected Λ and 𝜏𝑐𝑜𝑟𝑟, with the 
example of 𝑒 = 0.8. Solid lines correspond to the Wood and Byrne results. 

 
A detailed analysis [6] shows that the relevant parameter consists on the ratio of the Markovian 
mean flight time of the ball and the mean time between successive peaks in the plate motion. This 
dimensionless parameter depends on the bandwidth of the excitation signal. When the parameter is 
large, the Markovian approach is appropriate; but for low levels, memory effects become not 
negligible leading to a significant decrease of jump durations; and finally at smallest values of the 
ratio, chattering occurs. 
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ABSTRACT

Most studies on nanomechanical resonators in the literature are concerned with a single res-
onator. In this work, an array of two nanomechanical resonators is analyzed. A quasi-analytic
approach with averaging method is used to compare the beams responses with and without
electrostatic coupling terms. The results show modal interactions between the two beams due
to the electrostatic coupling. It is shown that the qualitative behavior of the coupled resonators
can be infered from the response curves of the uncoupled resonators. In particular, additional
loops occur due to the algebraic structure of the coupled system. The contribution lies in the
deduction of the beam array responses curve by using multiple uncoupled responses of the
single-beam resonators.
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1 INTRODUCTION

Arrays of MEMS or NEMS present complex dynamical behaviors due to electric, magnetic and
mechanic nonlinear couplings. Lifshitz and Cross [1] studied the responses of n electrical and
mechanical coupled oscillators with parametric resonance in the low nonlinear limit by using a
perturbation method. Gutschmidt and Goettlieb worked on arrays with electrical coupling. They
focused on the n-beam dynamic behaviour in the region of internal one-to-one, parametric and
several internal three-to-one resonances corresponding to low, medium and large DC voltages
[2]. Kacem et al. developped a single beam model to investigate the sensitivity of the resonance
with respect to the electrostatic forcing. Their researches were carried out using averaging
method validated by HBM+ANM [3]. In this paper, an array of n = 2 identical clamped-
clamped beams is also considered but coupled only by an electrostatic force in order to study
the modal interactions between the two beams due to the electrostatic coupling.

2 ARRAY OF TWO NANOMECHANICAL RESONATORS

A 2-moving-beam array is considered, as sketched in Figure 1. The two beams located at the
ends of the array are fixed and serve only as electrostatic actuator. All 4 beams are identical.
l, b, h, I , g are the dimensions of the beams, i.e., length, width, height, moment of inertia, gap
between two adjacent beams. E, ⇢ be the Young’s modulus and the material density. Each

0 1 2 3micro-beam

Vdc10
Vac10

Vdc32
Vac32

g

O

Vdc21

Vac21

h

W (x,t)s

x

O

Figure 1: Array of two clamped-clamped M/NEMS beams.

beam is an electrostatic actuator for its adjacent beams. V
s,s+1 = V

dc

s,s+1 + V
ac

s,s+1 cos(⌦t) is
the voltage applied between the successive beams s and s + 1 with V

dc

, V
ac

the continuous and
alternative voltages. The equation of the beam s in bending is as follows [2].
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with s = 1, 2. Let ✏0, C
n

be the dielectric constant and fringing the coefficient respectively. Ñ
represents the lineic load along the x-axis. The beams 1 and 2 are clamped-clamped.
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3 AVERAGING METHOD

The responses of the beams are more complicated than those of a single beam resonator. A
quasi-analytic solution obtained by the averaging method can be used to explain why the elec-
trostatic coupling generates additional loops onto the responses. First, the beam lateral deflec-
tion is expanded on its fundamental mode only:

w1(x, t) = �1(x)a11(t), w2(x, t) = �1(x)a21(t) (2)

First-order Taylor series are then used to simplify the analytic calculation:

1

(1 + w
s+1 � w

s

)2
' 1 � 2(w

s+1 � w
s

),
1

(1 + w
s

� w
s�1)2

' 1 � 2(w
s

� w
s�1) (3)

Since the resonators of the 2-beam array have the same boundary conditions, their eigenmodes
are identical. Therefore, a Galerkin method is used to eliminate the spatial dependence from
the equation of motion (1). Then using the averaging method and considering the solutions
a11(t), a21(t) in following forms

a11 = A11(t) cos(⌦t) + B11(t) sin(⌦t), (4)
a21 = A21(t) cos(⌦t) + B21(t) sin(⌦t), (5)

yield
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where the coefficients �
ij

, �
ij

, �
ij

depend on the beam characteristics and on the applied volt-
ages. They are not detailed here for the sake of conciseness. In Equations (6)-(9), the coupling
terms (1

2�11 + 1
8�13)B21 and (1

2�11 + 1
8�13)A21 represent the influence of the second beam on

the first beam and the coupling terms (1
2�21 + 1

8�23)B11, (1
2�21 + 3

8�23)A11 the influence of the
first beam on the second beam. When Ȧ11 = Ḃ11 = Ȧ21 = Ḃ21 = 0 the steady-state mo-
tions appear. The corresponding nonlinear algebraic system is solved by an adapted numerical
method, the obtained approximated solution is in agreement with a reference solution obtained
by HBM+ANM [3] not shown here.

In order to analyze the influence of the coupling terms, Equations (6)-(9) with and with-
out coupling terms are examined. The response curves with (red curves) and without (blue
curves) coupling terms are plotted in Figure 2. Without these coupling terms Equations (6)-(7)

3

20



MEDYNA 2017 25-27 Apr 2017, Sevilla (Spain)

22.36 22.38 22.4 22.42 22.44 22.46 22.48 22.5

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Ωnon−dimensional

W
m

ax

D1

E1

B1

C1

without influence terms

22.39 22.4 22.41 22.42 22.43

0.01

0.015

0.02

0.025
E1

(a)

22.36 22.38 22.4 22.42 22.44 22.46 22.48 22.5

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Ωnon−dimensional

W
m

ax

B2

C2

D2

E2

22.385 22.395 22.405

0.08

0.09

0.1

0.11

C2

B2
22.488 22.49 22.492

0.21

0.211

0.212 without influence terms

(b)

Figure 2: Design 1 without added mass, Response by neglecting the coupling terms (blue),
complete response (red). (a): first-beam response, (b): second-beam response.

and (8)-(9) form two independent systems of equations. Therefore, the responses of the two
beams, (blue response curves in Figure 2) are similar to two single-beam responses.

With coupling terms Equations (6)-(9) are dependent and share the same bifurcation
points and stability. When a bifurcation point is present on a response curve, the same bifurca-
tion point will also be present at the same frequency on the other beam response. Therefore, the
limit points originated from the responses without coupling terms will be present on all the other
beam responses with coupling terms. This leads to the appearance of additional limit points on
the response curves. In Figure 2, the limit points B1 and C1 on the first beam response generate
at the same frequencies the loop B2 � C2 on the second-beam response. In the same way, D2

and E2 on the second-beam response produce the loop D1 � E1 on the first-beam response.

4 CONCLUSION

A quasi-analytic analysis with the averaging method of a two-nanomechanical-resonator array
has been carried out. The existence of modal interactions between the two beams due to the
electrostatic coupling has been enlightened. The appearance of additional loops onto response
curves has been explained. The form of the response curves of an electrostatic coupled beam
array can be anticipated using the uncoupled single-beam-resonator responses. This research
represents an increment towards the comprehension and modeling of resonator arrays for appli-
cation in mass sensing.
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ABSTRACT

Under wet conditions, V-ribbed belts of the Automotive Accessory Belt Drive System might emit
a typical squeal noise. A test rig consisting of a static v-ribbed belt in contact with a pulley
lubricated with water allow to replicate the phenomenon. Measurements of the belt vibrations
suggest that whereas the pulley plays a minor role, the belt vibrations can be directly linked to
the squeal emission and it is shown that a single tooth - or single ”v”- is sufficient to generate
squeal. The source of these vibrations is often considered to be friction-induced vibrations.
However, the friction behaviour of the belts is shown unsufficient to explain the outbreak of
squeal and the mechanical properties also influence the domain of instability. A characteriza-
tion of the mechanical properties of the belt has been carried out using DMA experiments and
leads to a better understanding of the relation between the different belt structures and their
aptitude to generate noise.
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1 INDUSTRIAL AND SCIENTIFIC CONTEXT

During the last decades, the global noise emission of vehicles has decreased from 82 to 74 dB.
This let emerge parasite noises such as brake or wiper blade squeal. A typical squeal noise can
also be emitted by v-ribbed belts in the Automotive Accessory Belt Drive System. Previous
studies has allowed the suppression of noise in the case of a dry belt however a solution is
still needed in the presence of humidity. The squeal noise that appears on motors between the
v-ribbed belt and the alternator pulley has been replicated on a specific test rig presented in
section 2. The link between the noise and the mechanical vibrations of both the pulley and the
belt is then established in section 3 before the role of friction-induced instabilities features in the
occurence of the belt squeal are briefly recalled in section 4. As a more precise understanding
is needed, the influence of the mechanical properties of the belt is investigated in section 5.

2 EXPERIMENTAL SETUP

Figure 1: Experimental Setup consisting of: a pulley and a v-ribbed belt (1) clamped in 2 tension
sensors (2), plus a tensionner(3), a microphon (5) and a peristaltic pump (4)

The test rig used in the following studies is presented in Figure 1. The contact between
the v-ribbed belt and the pulley is replicated. The specificity is that the belt remains static so
that sliding exist all along the wrap - or contact - angle which is not the case on motors. The
rotation of the pulley is controlled so that the sliding velocity is known. The lubrification of the
contact is regulated with a peristaltic pump. Sensors measure the evolution of the tensions in
both slack and tight free spans. A minimum tension is maintained in slack span thanks to a belt
tensioner. The coefficient of friction is computed from the measurement of the tensions using
Euler’s formula. Measurements of the vibrations of the belt have been carried out with both
accelerometers and laser vibrometers. The sound is recorded with a microphon 30 centimeters
far from the pulley. Experiments consist in progressively increasing the rotational velocity with
a constant supply in water - about 1 mL/s. The belt initial tensions and the ramp of velocity
are modified and v-ribbed belts with different coatings are used. The rotational velocity can be
stationnary or with a sinusoidal form in order to replicate the phenomenon of acyclism.

2
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3 MECHANICAL VIBRATION AT THE ORIGIN OF THE BELT SQUEAL

Role of the Pulley It is assumed that the contact between the belt and the pulley is necessary
for the squeal noise to occur. However, the tests described in section 2 have been carried out
with different forms of pulley - plain or empty - without any change on the acoustic signature of
the squeal noise. Moreover, the modes of vibrations of the pulley have been investigated using
an impact hammer and no likeness has been observed between the natural modes of the pulley
and the fundamental mode of the squeal noise.

Role of the Belt Laser vibrometers have been used to investigate the link between the squeal
noise and the vibrations of the belt. A time frequency analysis of the belt velocity or vibrations
show that the squeal appear at the same time that strong belt vibrations occur. Moreover, the
spectral signature is the same for the belt vibrations and the squeal noise. Therefore, a link
between the belt vibrations and the squeal noise exist. Another experiment consist to reach
the range of parameters - sliding velocity, tension in free spans, and water supply - at which a
stationary noise exist and then to clamp the belt with fingers at proximity of the contact with
the pulley. The immediate disappearance of the squeal confirm that the mechanical vibrations
of the belt play a key role in the generation of the squeal noise. Similar experiments with the
pulley doesn’t have any effect.

So the mode of vibrations of the belt has been studied more in detail. On one side, the
data of the vibrometers has been completed with measurements using 3D accelerometers de-
tecting belt vibrations in the 3 directions. On another side, belt samples with only one rib have
been tested and a squeal noise with the same acoustical signature has been observed as previ-
ously. These results highlight that the mode of vibrations of the belts that cause the appearance
of the squeal noise doesn’t involve the whole structure of the belt but only each tooth separately
as mentionned by Dalgarno et al. [1]. However it is difficult to conclude on the excited mode
as several directions vibrates.

Therefore, the vibrations of the belt are necessary for the squeal to occur. The conditions
that let appear the mechanical vibrations of the belt has been studied The role of friction-induced
instabilities is summed up in the next section.

4 FRICTION-INDUCED INSTABILITIES AT THE ORIGIN OF BELT SQUEAL

Friction-induced instability features have been widely used to explain belt squeal both for dry
and wet belt. Sheng [2] has highlighted the role of the transition in a mixed lubrication regime
and the related negative slope of the friction versus sliding velocity curve as the main feature
for the noise to be triggered.

However, recent results show that the correspondance between the level of slope and
the appearance of noise is not obvious [3]. The consideration of low velocity sliding highlights
that the squeal appears after the strong decrease in friction coefficient, as it can be observed on
Figure 2. Moreover the transition from static to dynamic friction - for example the stick-slip
motion - is also unsufficient to explain the appearance of squeal [3].

Thus the separated consideration of the friction behaviour is not enough to understand
the generation of the instability, a finer understanding of the mechanical properties of the belt is
also required.

5 INFLUENCE OF THE BELT MECHANICAL PROPERTIES

The main mechanical properties of the belt are the stiffness of cords in its tension member
(back of the belt ) and both the stiffness and the damping properties of its teeth. Belts with

3
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Figure 2: Coefficient of Friction (COF - blue line) and Sound Pressure Level (SPL magenta
line) with respect to the sliding velocity for 3 similar belts

modified cords and teeth has been tested as describes in section 2. The results show that the
domain where the instability and the noise occur strongly depends on both cords and teeth
properties.

That is why the cords stiffness have been measured by traction tests whereas Dynamic
Mechanical Analysis (DMA) has been used for the tooth properties. The applicabilty of the
Time Temperature Superposition have been checked and the resulting mastercurves show the
evolution of the belt tooth properties on a large range of frequencies , as observed on Figure
3. The different belt teeths were distinguishable as a function of their coatings and belt mix-
tures. Further investigations consist to link the quantitative values reached thanks to the DMA

Figure 3. Mastercurves for the storage (top) and the loss (bottom) modulus

experiments with the outbreak of the squeal phenomenon.
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ABSTRACT

The vibration induced by the roughness of two surfaces sliding one upon each other is the exci-
tation source for a so-called roughness noise. This source is a stochastic process, the spectral
and statistic properties of which have to be described. Often the topographic properties of the
surfaces are known. However, those properties are not related in a simple way to the excitation.
The latter is determined by the statistics of the highest asperities of each surface. The aim of
this study is to explore this relationship between topography and vibration. To achieve this goal,
numerical and analytical methods have been implemented
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1 INTRODUCTION

When two rough surfaces are sliding one upon each other under weak load, the strains of the
asperities are low and a macroscopic vertical vibration of the two solids appears. This vibration
can be the source of jumps [1, 2] and is also a value of interest for the calculation of dispersive
forces [3]. However this vibration can not be directly associated to the combination of the two
surface topographies. Indeed only the highest asperities of each surface are in contact. The aim
of this study is to characterize this geometrical filtering. To address this issue, the statistical
properties of the contact of the highest asperities have to be understood. Analytical methods
for extremal events exist and are commonly used in finance, dimensioning and quantification
of risks [4]. To adapt such methods to our problem, a simplified system is studied considering
the relative distance between two surfaces touching in only one contact point and sliding one
upon each other. Let us call the upper one the slider which is considered square. An analytical
calculation is done and compared to a numerical simulation of the problem. These simulation
enable conclusions about the spectral properties of this vibration.

2 ANALYTICAL METHOD

Searching the first contact point between two surfaces is equivalent to find the maximum of
a process that has the properties of the sum of the two surfaces. This problem of maxima has
been widely studied. To apply those calculations to our case, a discrete way to describe surfaces
with independent variables has been used. A surface is described through the height probability
density function (pdf) and a power spectral density function (PSD). To convert this continuous
representation to a convenient discrete description of the surfaces let us define the correlation
length � of the surface. If two points of the surface are further than �, they are completely
uncorrelated. If L is the side length of the slider, we can thus define a number of points that are
independent and represent the surface, with N = L

2

�

2 . We assume that those N points have the
same pdf p as the sum of the surfaces. Introducing the associated cumulative density function
(cdf) P and following [4], the pdf g of the height of the maximum z is:

g(z) = Np(z)P(z)N�1 (1)

The two surfaces sliding one upon each other can be considered as a sequence of draws of
a maximum. The vertical vibration statistics should then follow the law given in equation 1.
Examples for various N are given in the figure 1 considering p Gaussian.

3 NUMERICAL METHOD

To compare to the results given by the analytical method presented above, the first contact
point problem is now studied numerically. Realistic rough surfaces are generated numerically
from typical PSD (rectangular shaped and fractal) with a Gaussian height distribution. The
topography of a slider and a track, 5 times longer than the slider, are generated. A typical
example of the topographies is shown on the figure 2. The slider is placed on one side of the
track and move along it with a discretization step equal to the surface discretization. No rocking
motion is taken into account. Let x be the horizontal offset from the initial position. The first
contact point when approaching the two surfaces is searched for each discretization point. All
height differences between the two median planes are collected giving the first contact point
profile h(x). A typical histogram of h is given in figure 3. Spectral properties can also be
deduced from the numerous simulations.
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Figure 1: pdf of the maximum for various N . The height is normalized by �
eq

, the standard
deviation of the sum of the surfaces

Figure 2: typical example of the topographies used to obtain the first contact point profile
(arbitrary scale)

Figure 3. histogram of the numerical first contact point profile

3
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4 COMPARISON AND CONCLUSION

The shapes of the pdf plotted in figures 1 and 3 are relatively similar. Numerous numerical
results have been compared to an analytical model exhibiting a good agreement between the
numerical and analytical results. Simulations have also brought spectral description of those
signals. This work enables then a complete description of the vibration due to the roughness
of two surfaces. It can then be used as an excitation source for dynamical models such as the
bouncing ball [5].
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ABSTRACT  

 
The problem of geometrically nonlinear free vibration of symmetrically laminated composite 
clamped beams (SLCCB) is described by an N-dof discrete model of an equivalent isotropic 
beam, with effective bending and axial stiffness parameters. The model is made of (N +1) bars, 
connected by N masses placed at the bar ends, connected by rotational springs, presenting the 
beam flexural rigidity. The large transverse displacements of the bar ends induce a variation in 
their lengths giving rise to axial forces causing the nonlinear effect and modeled by longitudinal 
springs. The nonlinear vibration problem, defined in terms of the mass tensor mij, the linear 
rigidity tensor kij and the nonlinearity tensor bijk,, is reduced, via application of Hamilton’s 
principle, to a nonlinear algebraic system solved using an explicit method for calculating the  
(SLCCB) fundamental nonlinear mode and associated amplitude dependent frequency 
parameters. The numerical results are found to be in a good agreement with previously published 
results, based on a semi analytical composite beam continuous theory. The discrete system for the 
(SLCCB), developed and validated here, can be used in further applications to investigate 
nonlinear vibrations of non-uniform composite beams, with irregularities in the mass or in the 
stiffness distributions. 
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1 INTRODUCTION 

In a series of previous works, it has been shown, both theoretically and experimentally, that beams 
constrained at both ends exhibit significant geometrical nonlinear behaviour at large vibration 
amplitudes, due to the axial strains induced by the large displacements.  It has been shown also 
that composite structures exhibit a more accentuated nonlinear behaviour than those made of 
classical materials [1].  Symmetrically laminated clamped composite beams (SLCCB) are used in 
the design of many engineering structures such as aircrafts, space vehicles, and defence industries. 
Very often, they are subjected to high excitation levels in severe work environments inducing 
large vibration amplitudes.  It is important in such situations, for obvious security and comfort 
reasons, that analytical and numerical tools are available, which enable designers to analyze and 
estimate accurately how far the structural dynamic characteristics deviate from those predicted by 
linear theory.   In [2], the nonlinear homogeneous beam bending vibrations have been investigated 
using an N dof discrete system made of (N +1) bars, connected by N masses placed at the bar 
ends, connected by (N+2) rotational springs, presenting the beam flexural rigidity (see figure 1). 
The large transverse displacements of the ends of the bars, modelled by longitudinal springs (see 
figure 2), induce a variation in their lengths giving rise to axial forces causing geometrical 
nonlinearity.  The analogy between the characteristics of the classical continuous beam model and 
those of the present discrete model was developed.  The nonlinear vibration problem, defined in 
terms of the mass tensor mij, the linear rigidity tensor kij and the nonlinearity tensor bijkl, was 
reduced, via application of Hamilton’s principle, to a nonlinear algebraic system solved using the 
so-called first formulation developed in [3].  The main advantage of nonlinear physical discrete 
models is their ability to be used quite easily to analyze the nonlinear behaviour of beams with 
irregularities in the geometry, mass or stiffness distributions.  It was then interesting to examine 
the extension of the discrete model to inhomogeneous beams, such as the (SLCCB) examined in 
the present work.  The approach adopted is based on the combination of a homogenization 
procedure [4, 5] with the N dof discrete model [2] to obtain an equivalent homogeneous beam 
with effective bending and axial stiffness parameters.  
 

 
 

Figure1: The N dof discrete model of the (SLCCB)                 Figure 2: Nonlinear effect due to the                              
Pythagorean Theorem      

2 DISCRETE FORMULATION AND NUMERICAL RESULTS  

The (SLCCB) studied in [4], [5] and [6] and examined in this work (Figure 3) has the following 
geometrical and mechanical characteristics:  h = 0,001; b = 0,01; L = 0,25m; E1=155 GPa, 
E2=21,1GPa,  ρ=1560 Kg/m3, υ12 = 0,248).   The intermediate parameters and Lay-up allowing 
calculation of the equivalent isotropic beam parameters, i.e.  11( )effES bA  and
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2
11 11 11( ) ( ( ))effEI b D B A � , which are the effective axial and bending stiffness respectively, for the 

four composite beams considered in the present paper are given in Figure 3. 

 
 
 

Figure 3:  Laminated beam notation and characteristics 

Consider the N dof discrete system developed in [1] for an isotropic beam.  The nonlinear 
differential equations governing the system nonlinear dynamics is written in the displacement 
basis (DB) in a matrix form as follows:  

> @^ ` > @^ ` � � ^ ` ^ `2 0K A M A B A AZ� �  ª º¬ ¼  (1) 

A discretization procedure, similar to that developed in [1], is applied to the equivalent isotropic 
beam using the parameters � �eff

ES and � �eff
EI  calculated as functions of the composite beam 

stiffness coefficients A11, B11 and D11 by: 11( )effES bA ; 2
11 11 11( ) ( ( ))effEI b D B A �  [4, 5].The 

effective parameters are inserted in the rigidity matrix > @K  and the nonlinear rigidity tensor 
� �B Aª º¬ ¼  presenting the discrete system through the rotational and longitudinal spring stiffness 

defined by: � �eff
EI

C
l

  and � �eff
ES

k
l

 .   It should be noted that the calculations, based on the  so-

called first formulation presented in [3], are performed in the modal basis (MB), in order to yield 
good estimates of the (SLCCB) amplitude dependent nonlinear frequencies using the single mode 

approach (SMA), giving: nl 2 211 1111
disc 1

11 11

3( ) = +
2

k b a
m m

Z . For validation purposes, the numerical results, 

based on equation (1), for (SLCCB) vibration amplitudes up to 1.5 times the beam thickness are 
presented in Figure 4 for four composite beams and compared to those of references [5], [6] 
showing a satisfactory agreement.  For higher amplitudes, the so-called second formulation 
developed in [3], which is known to have a wider range of validity, may be used as an alternative 
to the iterative method for solving the nonlinear amplitude equation. 
 

 
 

Figure 4: Comparison of the nonlinear frequencies obtained for different (SLCCB) lay-up by the 
present discrete model with previously published results 

0 0.5 1 1.5
0

500

1000

1500

Dimensional amplitude (mm)

Fu
nd

am
ent

al 
fre

que
ncy

 (H
z)

 

 

Unidirectional present method
Unidirectional from ref [5]
Unidirectional from ref [6]
(0°/90°/90°)s present method
(0°/90°/90°)s  from ref [5]
(0°/90°/90°)s from ref [6]
(90°/90°/0°)s present method
(90°/90°/0°)s from ref [5]
(90°/90°/0°)s from ref [6]
Cross-ply present method
Cross-ply from ref [5]
Cross-plyfrom ref [6]

32



MEDYNA 2017: 2nd Euro-Mediterranean Conference 25-27 Apr 2017 
on Structural Dynamics and Vibroacoustics   Sevilla (Spain) 

 

 

4 

 

3  Conclusion  

The problem of geometrically nonlinear vibrations of (SLCCB) is described by an N-dof discrete 
model of an equivalent isotropic beam, with effective bending and axial stiffness parameters. The 
model is made of (N +1) bars, connected by N masses placed at the bar ends, connected by 
rotational springs, presenting the beam flexural rigidity. The large transverse displacements of the 
bar ends induce a variation in their lengths giving rise to axial forces causing the nonlinear effect 
and modelled by longitudinal springs. The nonlinear vibration problem, defined in terms of the 
mass tensor mij, the linear rigidity tensor kij and the nonlinearity tensor bijkl, is reduced, via 
application of Hamilton’s principle, to a nonlinear algebraic system solved using an explicit 
method for calculating the (SLCCB) fundamental nonlinear mode and associated amplitude 
dependent frequencies. The numerical results are found to be in a good agreement with previously 
published results, based on a semi analytical composite beam continuous theory. As has been 
done with isotropic beams  in  [4, 5 and 6],  the discrete system for the (SLCCB), developed and 
validated here, may be used in further applications to investigate nonlinear vibrations of non-
uniform composite beams, carrying point masses, or beams with irregularities in the mass [7] or in 
the stiffness distributions.  
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ABSTRACT 
 

Simply supported beams are usually classified into two groups, depending on whether 
longitudinal displacements are restrained or not. This work goes deeper into the fact that the 
nonlinear behavior of the beam is significantly different in these two cases: one in which axial 
motion is allowed at one end but restricted at the other; and another in which there is no 
restriction to axial displacements at both ends. The analytical treatment of the problem leads to a 
relation between nonlinear frequency and amplitude for the different modes of vibration of the 
beam. A well-known commercial finite element software is used to validate the results of the 
analytical models. Nonlinear normal mode (NNM) shapes may be represented as a combination 
of several linear ones. The results of this investigation show that the contribution of linear modes 
other than the first one to each nonlinear one is significant. Different simulations are conducted 
with the aim to provide recommendations for the need of including such modes.  
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1 INTRODUCTION 

The dynamic behaviour of linear elastic beams under hypothesis of small strains and small 
displacements is well-known. However, in numerous applications, deflections are large enough to 
make the assumption of small displacements no more suitable. In these cases, the equilibrium 
needs to be imposed on the deformed configuration of the structure, what makes the system 
nonlinear. 

Although nonlinear vibrations of beams have been widely studied, available results are 
sometimes unclear and often contradictory [1[5]. For this reason, the present article intends to get 
some insight into the physical phenomenon and quantify the effect of the mentioned nonlinearities 
on the dynamics of simply supported beams with moderately large displacements. 

Simply supported beams are usually classified into two groups, depending on whether 
longitudinal displacements are restrained or not. This article deals with both groups separately. It 
will be shown that the nonlinear behaviour of the beam is strongly different in these two cases: 
one in which axial motion is allowed at one end (unsymmetrical case) and restricted at the other 
and another one where there is no restriction to axial displacements (symmetrical case).  

The analytical treatment of the simply supported axially unrestrained beam problem leads 
to a relation between nonlinear frequency and amplitude for the different modes of vibration of 
the beam. Some finite element simulations are carried out in order to validate the results, which 
are also compared to those obtained by other authors. 

Later, the axially restrained case, where both ends of the beam are immovable, is also 
briefly studied. The aim of this part is to cast light on the question about whether nonlinearities 
other than midline stretching should or not be included in the model. Once again, different results 
can be found in the literature in this regard [1[5, [6, [7]. 

The analytical treatment in this work uses the concept of Nonlinear Normal Modes 
(NNMs) introduced by Rosenberg in the 60s [8], which has experienced a great development 
since 1990 due to the works of Pierre, Shaw, Vakakis, etc. [9, [10]. In short, for an unforced 
conservative system, a NNM can be defined as a family of periodic motions which occur onto a 
2D invariant manifold in the phase space of the system. This manifold passes through a stable 
equilibrium point and, at that point, is tangent to one of the Linear Normal Modes (LNMs) of the 
linearized system. Then, NNMs are a natural generalization of LNMs, suitable to Nonlinear 
Systems. For a detailed exposition on NNMs, the reader is referred to [11]. 

 

2 SIMPLY SUPPORTED BEAM WITH UNRESTRAINED AXIAL DISPLACEMENTS 

The procedure followed by Nayfeh in [6 [12] for obtaining the NNMs of continuous 
systems has been used in this investigation. Fig. 1 show Frequency-Amplitude curves for the first 
NNMs and the configurations of axially unrestrained simply supported beams. Obviously, we are 
not taking into account the rigid body mode present in the symmetrical case.  

In both figures, the blue curve corresponds to an analytical model, while the blue circles 
correspond to Finite Element results. We have used commercial program Abaqus®, discretizing 
the beam in 16 elements with cubic interpolation. The initial conditions for these Finite Element 
simulations have been chosen to correspond to one particular NNM. For the first NNM, we have 
also included some results from the literature.  
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Fig. 1 frequency vs amplitude curves for the first NNM: unsymmetrical case (left) 

symmetrical case (right) 
 
Fig. 2 shows in blue the deformed shapes for the first NNMs, including the contributions 

of the first 5 linear modes. Rigid body motion in the symmetrical case has been avoided. 

 
Fig. 2 Deformed shape corresponding to the first NNM: Unsymmetrical case (left) and 

Symmetrical case (right) 
The main issue about a nonlinear frequency-amplitude curve (usually called Backbone 

Curve) is whether it shows hardening or softening behavior. It can be observed that, for the first 
mode, the unsymmetrical beam softens, while the symmetrical one hardens. The first immediate 
consequence is that, when dealing with a simply supported beam, it is not enough to specify 
whether axial motion is restrained or not since, even within the axially unrestrained group there 
exist different kinds of behavior. 

 

3 CONCLUSIONS 

It is found that, in the axially unrestrained case, two kinds on nonlinearities influence the 
motion of the beam. One is of geometric nature, while the other is due to longitudinal inertia. For 
the simply supported beam they produce, respectively, hardening and softening, but this may be 
different for other boundary conditions. 

Two different configurations of axially unrestrained simply supported beams have been 
considered, one having a fixed end and other with both ends free in the longitudinal direction. 
They have been shown to exhibit different behaviours, suggesting that the usual distinction 
between axially restrained and unrestrained simply supported beams [5] is not enough for 
characterizing their dynamics. For the first NNM, the beam undergoes hardening in the 
symmetrical case and softening in the unsymmetrical case. 
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The reasonably good accordance between analytical and Finite Element results (with 
axially extensible elements) indicates that the assumption of inextensible middle line, used for the 
axially unrestrained case, is pertinent –at least for the first two NNMs–. 
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ABSTRACT

The non-linear vibrations of a beam carrying a point mass at an arbitrary location and restrained
by translational and rotational springs at the two ends are investigated analytically and a
parametric study is performed, allowing examination of all possible combinations of classical
restrained end conditions, including elastic restraints. The dynamic equation was written at two
intervals of the beam span with appropriate end and continuity conditions. After the necessary
algebraic transformations, the generalised transcendental frequency equation was solved
iteratively using the Newton Raphson method. Once the corresponding program implemented,
investigations have been made of the changes in the beam frequencies and mode shapes for many
values of the mass, mass location and spring stiffness. Numerical results and plots have been given
here of the beam frequencies and first mode shape corresponding to various situations. The effect
of geometrical non-linearity has then been investigated using a semi analytical method based on
Hamilton’s principle and spectral analysis leading to solution of a non-linear amplitude equation.
A single mode approach, performed in the modal basis, has been adopted in order to obtain, for
various configurations of the beam examined, the backbone curves giving the amplitude dependent
nonlinear frequencies.
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1 INTRODUCTION

The operation of machines (machine tools, automotive, robot manipulators and others) introduces
dynamic constraints on the various components of the engine and the supporting elements. To
ensure correct operation, reduce the induced noise, and increase the machine fatigue life, it is
essential to determine the natural frequencies of the system, in both the linear and non-linear
regimes. Many such situations may be modeled by a beam carrying one or many masses, restrained
at its ends by flexible rotational and translational springs [1-2].  This makes it possible to study
different types of restrained end conditions, such as simply supported or clamped, depending on the
values assigned to the spring stiffness. The vibrations of restrained beams supporting point masses
have been partially examined before [1-3] but all of the studies available are restricted to the linear
case. The present paper is based on a systematic parametric study allowing easy choice of the
position of the mass to be added in order to adapt the linear frequencies and avoid possible
resonances. In the second part, the effect of geometrical nonlinearity on the system “beam + added
mass” amplitude dependent nonlinear frequencies is investigated. A single mode approach is
adopted, combining the semi analytical method for nonlinear structural vibrations developed
previously [4] and the linear modes calculated in the first part, and allowing various backbone
curves to be drawn, corresponding to various values of the spring stiffness and added mass.

Figure. 1. The restrained beam with a point
mass. Beam characteristics (L, S, �, E, I) Table1: eigenvalues of the “beam mass” for different

values of the rotational stiffness, mass and mass locations

2 VIBRATION OF A RESTRAINED BEAM CARRYING A POINT MASS
Consider the beam shown in Figure1, with a point mass m, restrained at the ends by translational
and rotational springs. The beam transverse displacement is W( x,t ) w( x )sin( t )� �

The problem under consideration is governed by the following differential equation:
4

4
4 0d w w

dx
�	 � with 4 2S

EI
�

	 � � (1)

The function w is defined in piecewise by: 1( )w  and 2 ( )w  in � �0, and � �,1 respectively, with
x
L

 � ; u
L

 � . The general solution for transverse vibration in the first and second span, can be

written as:

1 1 1 1 1( ) cosh( ) sinh( ) cos( ) sin( )i i i iw a L b L c L d L        � � � � ���

2 2 2 2 2( ) cosh( ( )) sinh( ( )) cos( ( )) sin( ( ))i i i iw a L b L c L d L            � � � � � � � � ���

In which
2

4 i
i

S
EI

 
 � for i= 1, 2, ...  are the mode shape parameters of the beam with an added

point mass. The constants aj, bj, cj, dj are determined by the continuity and end conditions:

At the ends:
3

1
1 1 03

0

( ) ( )i
i

d w k w
d 






 �
�

�� ;
2

11
32

00

( )( ) ii dwd w k
dd 


 ��

� (4)


�
K3=10 k4=10 K3=100 k4=100 K3=10 k4=100

M=0,5 M=1 M=0,5 M=1 M=0,5 M=1
0 4,15566 4,15566 4,64132 4,64132 4,39001 4,39001

0,1 4,10204 4,04572 4,61416 4,58502 4,31999 4,24643
0,2 3,89071 3,66687 4,40167 4,17988 4,06073 3,79719
0,3 3,64396 3,32802 4,07685 3,72112 3,78953 3,44078
0,4 3,48471 3,13988 3,85720 3,46419 3,63523 3,26359
0,5 3,43214 3,08101 3,78481 3,38463 3,60750 3,23319
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Continuity conditions:
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Equations 4 to 7 give a linear system with eight equations and eight unknowns whose determinant
must vanish, leading via application of a Newton–Raphson algorithm, to the vibrating beam
frequencies and mode shapes.  The corresponding numerical results are summarised in Table1.

3 APPLICATION: A UNIFORM RESTRAINED BEAM WITH ONE POINT MASS

The effect of the added mass location on the beam first frequency, with its associated mode
and curvatures, is shown in Figure 2 for various values of the rotational stiffness for M = 0.5. located
at u=L/2. These results are summarised in Table 1.

Figure. 2 (a) First mode and (b) Curvatures for M = 0.5,u=0.5 and various values of k

4 GEOMETRICALLY NONLINEAR VIBRATION OF A RESTRAINED BEAM
CARRYING A CONCENTRATED MASS.

At large vibration amplitudes, the beam shown in Figure1 kinetic energy T, linear strain energy Vlin
and nonlinear strain energy VNlin induced by large deflections can be expressed as [4]:

� � � �
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Expanding w(x,t) as a series of basic spatial functions: i i i iw( x,t ) q ( t )w ( x ) a w sin( t )� � � and applying
Hamilton’s principle and integrating the time functions over a period of vibration, the system
dynamics is governed by [1]:

� � �  �� �  � � � �22 3 2K A B A A M A� �� � �� � (9)
in which {A} is the column vector of the basic function coefficients, and [K] and [M] are the rigidity
and mass matrices, and  �� �B A� �

� � is the nonlinear geometrical rigidity. Equation 9 is the Rayleigh-
Ritz formulation of the nonlinear problem, to be solved numerically, or explicitly. From equation
9, the frequency��may be obtained by pre multiplying the two hand sides of the equation by {A}T,
which gives:

 � � � �  �  �� �  �

 � � � �
2

3
2

T T

T

A K A A B A A

A M A
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The single mode approach, consists of neglecting all the basic functions except a single ‘‘resonant’’
mode. Thus, it reduces equation 10(a) to 10(b), in which [K]=k11, [M]=m11, [B({A})]=b1111. Figure
3(a) shows the backbone curves corresponding to various values of the mass, mass location and
rotational spring stiffness. Figure 3(b) shows the curvatures associated to the first nonlinear mode.

Figure 3 (a)Backbone curves for various values of the mass, mass location and rotational stiffness;
(b) curvatures associated to the first nonlinear mode

5 CONCLUSION

The non-linear vibrations of a beam carrying a point mass at an arbitrary location and supported by
translational and rotational springs at the two ends have been investigated analytically and a
parametric study was performed, allowing examination of many combinations of classical end
conditions, including elastic restraints.  The dynamic equation was written at two intervals of the
beam span with appropriate end and continuity conditions. After the necessary algebraic
transformations, the generalised transcendental frequency equation was solved iteratively using the
Newton Raphson method. Numerical results and plots have been given of the beam frequencies and
first mode shape corresponding to various situations. The effect of geometrical non-linearity has
then been investigated using a semi analytical method based on Hamilton’s principle and spectral
analysis leading to solution of a non-linear amplitude equation. A single mode approach, performed
in the modal basis, has been adopted in order to obtain, for various configurations of the beam
examined, the backbone curves giving the amplitude dependent nonlinear frequencies.
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ABSTRACT 
 

The present paper concerns the nonlinear dynamic behaviour of orthotropic rectangular plate 
under boundary conditions (C-C-C-SS) and (C-C-SS-SS). The main objective is to find semi 
analytical solutions for the first non-linear mode shapes and the associated non-linear frequencies 
of the composite plates at large vibration amplitudes. The basic formulation of nonlinear free 
vibrations has been developed based on the classical plate theory (CPT) and the nonlinear strain-
displacement relation. The nonlinear governing equations are derived from Hamilton's principle 
and the Von Kármán geometrical non-linearity assumptions. Assuming the out-of-plane 
displacement as a double trigonometric function, the in-plane displacement components are found 
by solving the nonlinear algebraic equations of motion expressed in terms of displacements. The 
improved version of the Newton-Raphson method and the semi-analytical model developed by El 
Kadiri et al. for fully clamped rectangular plates, has been adapted to the above cases.  
 

42



MEDYNA 2017  25-27 Apr 2017, Sevilla (Spain) 
 

 

2 

 

1 INTRODUCTION 

Laminated composite plates are frequently used in various engineering applications in the 
aerospace, mechanical, marine, and automotive industries because of their advantages such as high 
stiffness-to-weight and strength-to-weight ratios. In the case where these structures are subjected to 
dynamic loads may induce large amplitude vibrations and, thus, the structure may exhibit 
significant nonlinear behaviour that must be studied for the efficient design of such structures. 
Numerous methods have been developed to perform geometrically nonlinear analysis of plates. 
Benamar et al [1] presented a theoretical formulation of the plate vibration problem at large 
displacement amplitudes. Han and Petyt [2], Ribeiro and Petyt [3] have been presented dealing with 
the geometrically non-linear dynamic behaviour of symmetrically laminated plates by using the 
hierarchical finite element method (HFEM). Harras and Benamar [4] investigated theoretical 
and experimental of the non-linear behaviour of various fully clamped rectangular composite 
panels at large vibration amplitudes. El Kadiri et all [5, 6] presented a semi-analytical method, 
based on Hamilton's principle and spectral analysis, for the determination of the geometrically 
non-linear free response of thin straight structures. Several review articles on orthtropic plates 
have been reported in the literature by various researchers, such as Leissa [7], Reddy [8], and Noor 
et al. [9]. 
In the present paper the method developed by El Kadiri et al. is extended to the geometrically 
nonlinear analysis of orthotropic plate with two boundary conditions (C-C-C-SS) and (C-C-SS-SS). 
This boundary conditions are widely used in aerospace structures. On the other hand, this study will 
contribute to generalize and extend the model to different conditions. 

2 THEORY 

Consider the transverse vibration of C-
C-SS-SS rectangular plate which is 
clamped on two edges, and simply 
supported in the other edges. This plate 
is shown in figure 1. 
                                                           

For the classical plate laminated theory, the strain-displacement relationship for large deflections: 

 

�
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≡ {𝜀𝜀} = {𝜀𝜀0} + 𝑧𝑧{𝜅𝜅} + {𝜆𝜆0} (1) 

where {𝜀𝜀0} and 𝑧𝑧{𝜅𝜅} are the membrane and the flexural strain tensors, respectively, and U, V, W 
are the middle surface displacement components in the x, y and z directions respectively. 
The free vibrations of the structure are governed by Hamilton’s principle which is symbolically 
written as 
 𝛿𝛿 � (𝜕𝜕 − 𝑇𝑇)𝑑𝑑𝑑𝑑 = 0

2𝜋𝜋

0
 (2) 

 

In which 𝛿𝛿 indicates the variation of the integral. V and T are respectively the total strain energy 
and the kinetic energy, where  𝜕𝜕 = 𝜕𝜕𝑎𝑎 + 𝜕𝜕𝑏𝑏. Replacing T and V in this equation by their expressions 
given above, integrating the time functions, and calculating the derivatives with respect to the ai, 
leads to the following set of non-linear algebraic equations:  

Figure 1. Plate notation 
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 3aiajakbijkl∗ + 2ajkir∗ − 2aiω∗2mir
∗ = 0,     i = 1, … , n. (3) 

 mij = ρH5ab mij 
∗ , kij =

aH5E
b3 kij∗  , bijkl =

aH5E
b3 bijkl∗  (4) 

a, b: length, width of the plate; E: Young's modulus; H: plate thickness; 𝑎𝑎𝑘𝑘: contributions 
corresponding to the kth basic functions; ρ: mass density per unit volume of the plate. 
ω, and ω∗are the frequency and non-dimensional frequency parameters respectively. 
𝑘𝑘𝑖𝑖𝑖𝑖∗ , 𝑚𝑚𝑖𝑖𝑖𝑖

∗ and 𝑏𝑏𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖∗ : General  term  of  the  non-dimensional  rigidity  tensor,  mass  tensor  and non-
linearity tensor respectively. 

2.1 Explicit procedure 
In modal functions basis for the first mode (MFB): 
 

𝑤𝑤∗(𝜕𝜕∗,𝜕𝜕∗) = �𝑎𝑎𝑖𝑖Φ𝑖𝑖
∗(𝜕𝜕∗,𝜕𝜕∗) = {𝐴𝐴}𝑇𝑇{Φ∗}

𝑛𝑛

𝑖𝑖=1

 (5) 

with {Φ∗}𝑇𝑇 = [Φ1
∗    Φ2

∗ …Φ𝑛𝑛
∗ ] and  {𝐴𝐴}𝑇𝑇 = [𝑎𝑎1 𝜖𝜖2 … 𝜖𝜖𝑛𝑛] 

 

 𝜖𝜖𝑟𝑟 =
3𝑎𝑎1𝑏𝑏𝑟𝑟111∗

2((𝑘𝑘11∗ + 𝑎𝑎12𝑏𝑏1111∗ )𝑚𝑚𝑟𝑟𝑟𝑟
∗

𝑚𝑚11
− 𝑘𝑘𝑟𝑟𝑟𝑟∗ )

    (𝑟𝑟 = 2,  3 … 16) (6) 

 𝑤𝑤𝑛𝑛𝑖𝑖1∗ (𝜕𝜕∗,𝜕𝜕∗,𝑎𝑎1) = 𝑎𝑎1Φ1
∗(𝜕𝜕∗,𝜕𝜕∗) + 𝜖𝜖2Φ1

∗(𝜕𝜕∗,𝜕𝜕∗) + ⋯+ 𝜖𝜖16Φ16
∗ (𝜕𝜕∗,𝜕𝜕∗) (7) 

 

The chosen basic functions 𝑃𝑃𝑖𝑖∗(𝜕𝜕) were the linear clamped-simply supported beam functions and 
𝑄𝑄𝑖𝑖∗(𝜕𝜕)  were linear clamped-clamped beam. 
 

¾ Clamped-Simply supported beam 
 𝑃𝑃𝑖𝑖∗(𝜕𝜕) =  𝑐𝑐ℎ (𝑙𝑙𝑖𝑖𝜕𝜕∗) − cos( 𝑙𝑙𝑖𝑖𝜕𝜕∗) − (𝑠𝑠ℎ (𝑙𝑙𝑖𝑖𝜕𝜕∗) − sin ( 𝑙𝑙𝑖𝑖𝜕𝜕∗)) (

(𝑐𝑐ℎ (𝑙𝑙𝑖𝑖) − cos  (𝑙𝑙𝑖𝑖)
𝑠𝑠ℎ (𝑙𝑙𝑖𝑖) − sin 𝑙𝑙𝑖𝑖)

) (8) 

¾ Clamped-Clamped beam 
 

𝑄𝑄𝑖𝑖∗(𝜕𝜕) =
𝑐𝑐ℎ �𝜐𝜐𝑖𝑖𝜕𝜕𝑎𝑎 � − cos( 𝜐𝜐𝑖𝑖𝜕𝜕𝑎𝑎 )
𝑐𝑐ℎ (𝜐𝜐𝑖𝑖) − cos  (𝜐𝜐𝑖𝑖)

−  
𝑠𝑠ℎ �𝜐𝜐𝑖𝑖𝜕𝜕𝑎𝑎 � − sin ( 𝜐𝜐𝑖𝑖𝜕𝜕𝑎𝑎 )
𝑠𝑠ℎ (𝜐𝜐𝑖𝑖) − sin  (𝜐𝜐𝑖𝑖)

 (9) 

3 RESULTS OF NON-LINEAR ANALYSIS 

The geometrical and material properties are defined in Table 1. 

Table 1. Geometric and material properties of thin plate 
 

 
 
 
 
 

 
 
 

Geometric properties Material properties 
Orientation of principale axes :[90,45,-45,0]sym 

a=485.7mm ; b=322.9 mm ;   h=1 mm 
Ex=120.5 GPa; Ey=9.63GPa; Gxy=3.58 GPa; 
𝜈𝜈𝑥𝑥𝑦𝑦=0.32;𝜌𝜌 = 1540 𝑘𝑘𝑘𝑘/𝑚𝑚3 

Figure 1. First non-linear mode rectangular C-C-
SS-SS plate α=b/a=2/3, w*(x*,y*). 

Figure 2. Comparison of the change 
frequency of the first mode for: 𝛼𝛼 =
1,5 ;𝛼𝛼 = 1;𝛼𝛼 = 1,5. 
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Comparison of the non-linear frequency 
and linear frequency of the C-C-SS-SS 
rectangular plate, for various plate aspect 
ratios (𝛼𝛼 =a/b), where 𝑎𝑎1 represent the 
amplitude of vibration (Table 2). 

4 CONCLUSION 

o The first non-linear mode of C-C-S-S and the explicit analytical expressions for the higher 
mode contribution coefficients to the first non-linear mode shape have been obtained. 

o Numerical results obtained from the application of C-C-SS-SS rectangular plate with 
different values of aspect ratio 𝜶𝜶 have been given.  

o The validity of the current approach will be compared later those of finite element methods 
(FEM),  
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𝛼𝛼 =a/b 0.4 0.66 1 1.5 
𝜔𝜔𝑖𝑖
∗ 79.420 86.249 102.37 143.73 

𝜔𝜔𝑛𝑛𝑖𝑖
∗ (𝑎𝑎1 = 0,01) 79.4366 86.268 102.40 143.79 

𝜔𝜔𝑛𝑛𝑖𝑖
∗ (𝑎𝑎1 = 0,25) 88.988 97.063 117.93 174.59 

Figure 3. Normalised first non-linear mode 
rectangular C-C-SS-SS plate α=1,5, x*=0,5. Curve 1, 
lowest amplitude ; curve 3, highest amplitude. 

Figure 4. Normalised first non-linear mode 
rectangular C-C-SS-SS plate α=1,5, x* =0,25. Curve 
1, lowest amplitude ; curve 3, highest amplitude. 

Table 2. Comparison of non-dimensional frequency parameters 
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ABSTRACT

The present work investigates the free undamped vibrations of arbitrarily sagged cables accord-
ing to the catenary theory. Defining the dynamic equilibrium configuration around the catenary
static profile, an exact solution of the free linear transverse vibrations is developed analytically.
The effectiveness of the established model is shown by means of comparisons between with re-
sults determined by classic formulations in case of horizontal and inclined shallow/non-shallow
cables.
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1 INTRODUCTION

The dynamic motion of cables is mainly studied with respect to both parabolic and the catenary
static profiles. Based on the first works of Irvine [1] dedicated to the free linear oscillations of
suspended cables, several research were developed according to the parabolic approach. Never-
theless, the necessity to account the catenary effect has been demonstrated for different types of
cables with important sag as those used in suspended bridges or as transmission lines. Accord-
ingly, the catenary model has been adopted in some recent papers: while an analytical solution
specific to the transversal motion was proposed by Lacarbonara et al. [2] by considering the
exact nonlinear static profile of horizontal non-shallow cables, Zhou et al. [3] has solved the in-
plane dynamic problem specific to taut inclined cables by introducing the cubic approximation
of the catenary geometry. In the light of previous models, the present work provides accurate
analytical solution based on the elastic catenary theory and related to the free linear vibrations
of both horizontal and inclined cables.

2 ANALYTICAL SOLUTION TO THE CABLE DYNAMIC PROBLEM

A suspended cable between two fixed supports A and B displayed in Figure 1 is characterized
by a specific weight �

c

, a non deformable cross-section denoted by A
c

and a linearly elastic
material defined by a Young elastic modulus E

c

. A local Cartesian coordinate system (x, y, z)
is attached to the cable’s chord having an angle ↵ with respect to l defining the horizontal
projection of the chord cable length L.

Figure 1. Static equilibrium configuration of a suspended cable

Under the action of its total weight, the strained static profile is determined expressed as follows:
8
>>><

>>>:

y (x, ⌧)

L
=

cosh (C1 (⌧)) � cosh
�
C1 (⌧) � ⌧ x

L

�

⌧
; ⌧ =

m
c

gL

T

C(⌧) =
⌧e⌧

e⌧ � 1
tan ↵ ; C1(⌧) = ln

⇣
C +

p
C2 + e⌧

⌘ (1)

Considering the static equilibrium configuration defined by the catenary profile given previously
and taking into account the assumptions related to the linear vibration theory, the cable dynamic
motion reduces to the transversal component characterized by dimensionless frequencies ⌦

k

2
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obtained as roots of the following transcendental equation:

tan ⌦
k
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with:
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>>>:
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4⌧
; ⇢1 = cosh2 C1 + cosh2 (C1 � ⌧) ; ⇢2 = cosh C1 cosh (C1 � ⌧)

⇢3 = cosh C1 sinh (C1 � ⌧) ; ⇢4 =
sinh (2 (C1 � ⌧)) + sinh (2C1)

2
; �2 =

⌧ 2

⌘�

(3)

where � is the Irvine parameter depending on the dimensionless thrust ⌘ = T/E
c

A
c

and the
cable’s curvature � tending to unity in case of horizontal cables according to Irvine formulation
[1] based on parabolic approach. However, accurate expression of the curvature term is obtained
according to the actual formulation for both horizontal and inclined arbitrarily sagged cables:

� =
sinh

�
3⌧

2

�
cosh

�
3
�
C1 � ⌧

2

��
+ 9 sinh

�
⌧

2

�
cosh

�
C1 � ⌧

2

�

6⌧
(4)

It must be noted that equation (4) reduces to the formula proposed by Lacarbonara et al. [2] for
horizontal non-shallow cables given by:

� =
9 sinh

�
⌧

2

�
+ sinh

�
3⌧

2

�

6⌧
(5)

3 MODEL VALIDATION

⌧ Irvine’s Enhanced Irvine’s Present Exact

1.5 8.95 8.79 8.48 8.44

Error(%) 6.04 4.15 0.47

2.5 8.95 8.66 7.85 7.63

Error(%) 17.30 13.50 2.88

Table 1: Lowest symmetric frequencies of horizontal cables with � = 10⇡ obtained with Irvine
theory, enhanced Irvine theory, and present model, and relative errors (%) with respect to the
exact (non-condensed) model.

In order to show the accuracy of the proposed solution, an investigation is performed regarding
the evaluation of dimensionless frequencies obtained according to the actual formulation from
one side and using models found in th literatue. The results related to the comparison held on
non-shallow horizontal profiles and taut inclined cables are respectively reported in Table 1 and
illustrated by Figure 2. As it may be remarked from Table 1, the error made by the general
catenary-based model is by far smaller than those inherent to proposed solutions by Irvine [1]
and Lacaronara et.[2]. In fact, the difference between present results and exact ones ranges

3
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from 0.47% to 2.88%, with an expected increase for the looser cable, where the effect of the
longitudinal dynamics (herein neglected) becomes more important; however, it increases more
for both the enhanced (from 4.15% to 13.5%) and the original Irvine theory (6.04% to 17.30%).
On the other side, the validity of the present model is demonstrated by the the Figure 2 specific
to the case of taut inclined cables. As a matter of fact, the absolute relative error with respect to
the frequencies found by the Galerkin (resp. Zhou) varies from 0.03% (resp. 0.07%) to 1.202%
(resp. 1.47%) for an inclination ↵ = 10˚ and ranges from 0.05% (resp. 0.048%) to 0.79% (resp.
0.95%) when ↵ = 60˚. It must be noted that the results obtained analytically remain acceptable
since the absolute relative error with respect to Zhou’s results - which are nearly concident with
the ”exact” ones - does not exceed about 1.5%: such small error is likely due to the factor of the
weight component parallel to the cable chord accounted in Zhou’s model and neglected in the
present formulation.

Figure 2: Relative errors ✏
r

(%) related to the 1st and 2nd dimensionless frequencies ⌦1,2 with re-
spect to results obtained by both Galerkin and Zhou’s methods and presented in [3] for inclined
cables with: (a) ↵ = 10˚; (b) ↵ = 60˚

4 CONCLUSION

A general catenary-based model is developed analytically for the transverse linear free un-
damped vibrations of shallow/non shallow arbitrarily inclined cables. The exactitude of the pro-
posed solution is exhibited by a maximum absolute relative errors |✏

r

| = 2.88% and |✏
r

| ' 1.5%
calculated with respect to the exact results respectively for non-shallow horizontal cables (⌧ = 2.5)
and taut inclined cables.
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ABSTRACT

In this paper, the dynamics of a dc-ac resonant self-oscillating LC series inverter is analyzed
from the point of view of piecewise smooth dynamical systems. Our system is defined by two
symmetric configurations and its bifurcation analysis can be given in a one dimensional param-
eter space, thus finding a non smooth transition between two strongly different dynamics. The
oscillating regime, which is the one useful for applications and involves a repetitive switching
action between those configurations, is given whenever their open loop equilibrium is a fo-
cus. Otherwise, the only attractors are equilibrium points of node type whose stable manifolds
preclude the appearance of oscillations.
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Figure 1. Schematic diagram of the LC series resonant inverter.

1 INTRODUCTION

In this paper we deal with an analysis of the LC series resonant inverter, similar to the one
developed in [1] for its LC parallel counterpart. We put in evidence some relevant differences
between these two implementations from the point of view of dynamics and bifurcations, which
are mainly related to the location of the equilibria regarding the switching manifold. The rest
of this paper is organized as follows. Section 2 presents the mathematical switched model of
the system and its normalization, thus resulting in a unique bifurcation parameter. In section
3, we find that the transition from spiral to node of the open loop equilibrium further implies a
non smooth global bifurcation, thus inhibiting the desired oscillatory mode. Finally, concluding
remarks are drawn in the last section.

2 SYSTEM DESCRIPTION AND MATHEMATICAL MODELING

Figure 1 shows the circuit diagram of the system considered in this study that is an LC series
resonant inverter [2]. he switches S1 and S4 are ON when i

L

> 0 (� = 1), and they are turned
OFF when i

L

< 0 (� = 0). The switches S2 and S3 are driven in a complementary way to S1 and
S4. Let v

C

be the voltage of the output capacitor, i
L

the inductor current and z = (v
C

, i
L

)| the
vector state. Let also u be the variable determined by the control in the form u = 2� � 1, that is
u = 1 if i

L

> 0 and u = �1 if i
L

< 0. Let us define ⌧ and x = (x1, x2)
| as follows:

⌧ = !0t, x1 =
v

C

V
g

, x2 =
i
L

Z0

V
g

.

The dynamical model of the system is as follows:

ẋ = Ax + Bu, (1)
h(x) = C|x, (2)

where the matrix A and the vector B are redefined as

A =

0

@
0 1

�1 � 1

Q

1

A , B =

✓
0
1

◆
.

Note that above parameters are the natural frequency !0, the characteristic impedance Z0 and
the quality factor Q of the LCR resonant series circuit, which are given by the expressions

!0 =

r
1

LC
, Z0 =

r
L

C
, Q =

Z0

R
S

,

where R
S

= R + r
C

+ r
L

is the equivalent series resistance of the circuit. Note also that the
open loop system (1), in which the switch variable u remains constant, either u = 1 or u = �1,
has as unique attractor the equilibrium point x = (u, 0)|. The eigenvalues of the matrix A are

p± = � 1

2Q
±
r

1

4Q2
� 1,

2
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and it can be deduced, due the physical restriction Q > 0, which implies eigenvalues with
negative real part, that the open loop equilibrium is always stable. However, there is a minor
transition at Q = 1/2, because the eigenvalues change from real to complex values. If Q > 1/2,
the two eigenvalues are complex conjugated, so that the equilibrium is surrounded by spiraling
trajectories. Otherwise, if Q  1/2, the equilibrium is a node, and so the orbits tend to the stable
manifold corresponding to the eigenvector associated to the highest or to the lowest eigenvalue
considering forward or backward time evolution respectively. Unlike in the linear system, we
will prove that in our piecewise smooth system (1)-(2), a non trivial non smooth bifurcation is
produced at the same value Q = 1/2.

3 PIECEWISE SMOOTH ANALYSIS

3.1 The switching manifold and the sliding subset

Recall that from (2), the switching manifold is defined here as ⌃ = {x : x2 = 0}. According to
the Filippov theory, sliding dynamics can occur in a subset ⌃

S

of the switching manifold ⌃, if
the vector fields F+ and F� satisfy the condition

⌃
S

=
�
x 2 ⌃ : (rh(x) · F+(x)) (rh(x) · F�(x)) < 0

 
, (3)

in which r(·) is the gradient operator. This means that in a sliding region, the vector field
points inwards or outwards at both sides of ⌃

S

. Conversely, in the points not belonging to ⌃
S

,
the vector field crosses ⌃. Roughly speaking, three different cases of switching dynamics can
exist, one of them corresponding to simple crossing associated to Carathéodory solutions. The
other two cases are the attracting and the rejecting sliding motions. In our case, the field F+

and F� points outwards ⌃
S

, so the sliding is repelling and it is defined in the subset

⌃
S

= {x : �1 < x1 < 1, x2 = 0} .

3.2 The non oscillatory dynamics

We deal first with the non oscillatory dynamics. Actually, this a malfunction of the inverter
in real applications, which occurs under the over damping condition, that is in the parameter
domain 0 < Q  1/2. This case is illustrated in Fig. 2 using Q = 0.4, where some ad
hoc trajectories have been depicted. If 0 < Q  1/2, the eigenvalues of the matrix A are
real and negative, and so the dynamics evolving around each equilibrium cannot cross their
corresponding stable manifolds. The consequence of this fact is that for any arbitrary trajectory,
at most only one switching can be produced and therefore, the oscillating regimen cannot be
attained. The boundary of attraction between the twin equilibrium points, which is also depicted
in Fig. 2 using red color, is made up of three pieces: the sliding subset ⌃

S

and the part of stable
manifold corresponding to the lowest (more negative) eigenvalue in the valid side of the state
plane for each equilibrium.

3.3 The self oscillating dynamics

In the following, we consider the quality factor restricted to the range Q > 1/2. Then, system
(1)-(2) has an oscillatory dynamics, which is the one useful for inverter applications. Notice
that for the linear case (1), with either u = 1 or u = �1, we have naturally a focus dynamics
converging to an equilibrium, so that the self sustained oscillation is only enabled by the switch-
ing action introduced in (2). To prove this, let us choose an initial point located in the upper half
plane. The dynamical integration forces the trajectory to cross ⌃ at a point (y1 > 1, y2 = 0),

3
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Figure 2: Boundaries of the attraction basin of the twin equilibria (blue points) for the system
(1)-(2) with Q = 0.4 < 1/2, defined by the rejecting sliding segment and the eigenvectors
corresponding to the lowest eigenvalue (red lines). A scheme of the piecewise smooth vector
field and some illustrative trajectories have been also plotted. Notice that they tend to the stable
manifold corresponding to the highest eigenvalue (blue lines).

Figure 3: Oscillatory dynamics for system (1)-(2) with Q = 1.5 > 1/2, thus converging to a
limit cycle, depicted in blue color, which is defined by two half cycles connected each other.

because it evolves clockwise around the right side equilibrium x+ = (1, 0). Then, the trajectory
enters the lower half plane, so evolving clockwise around the left side equilibrium x� = (�1, 0)
to reach and cross ⌃ again at a point (y1 < �1, y2 = 0). This process is repeated indefinitely,
thus converging the trajectory to a finite limit cycle, that is the oscillatory dynamics, due to the
dissipative character of the system. To get an expression of the stable limit cycle, it turns out
more convenient to introduce the bifurcation parameter � as the quotient between the real and
the imaginary parts of the focus eigenvalue p+ that is

p+ = � 1

2Q
+ i

r
1 � 1

4Q2
= � + i!

r

= �

✓
1 +

i

�

◆
,

in which
� =

�

!
r

= � 1

2Q
p

1 � 1/(4Q2)
= � 1p

4Q2 � 1
< 0.

Fig. 4 shows the evolution of the parameter � in terms of the quality factor Q. Notice
that !

r

is the ratio between the free running frequency ! and the natural frequency !0 in the
real system, that is ! = !

r

!0. Thus, if we take the new time and variables

✓ = !
r

⌧, y1 = x1, y2 = !
r

x2,

4
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Figure 4. The plot of the focus parameter � versus the quality factor Q.

(a) Y1 versus � (b) Y1 versus Q

Figure 5: Amplitude of the limit cycle versus � and Q. The gray dashed lines are the asymptotes
to which the amplitude tends for high absolute values of the corresponding parameter.

and take into account that !�2
r

= �2 + 1, we obtain from (1)-(2) the normalized system

dy

d✓
=

✓
0 �2 + 1

�1 2�

◆
y +

✓
0
1

◆
u, (4)

h(y) = C|y, (5)

in which y = (y1, y2). Accordingly, the switching manifold is redefined as ⌃ = {y : y2 = 0}.
Taking into account the symmetry of the vector field with respect to the origin, we focus our
attention only to the half-plane y2 � 0, where u = 1 with the focus located at point (1, 0). Thus,
solving equation (4) with u = 1, we get

✓
y1(✓) � 1

y2(✓)

◆
= �(✓)

✓
y1(0) � 1

y2(0)

◆
, (6)

where �(✓) is an evolution operator given by

�(✓) = e�✓

✓
cos ✓ � � sin ✓ (�2 + 1) sin ✓

� sin ✓ cos ✓ + � sin ✓

◆
. (7)

Since we are dealing with orbits for y2 � 0 starting at ⌃ and returning to ⌃ at time ✓1 after
surrounding the focus, we can write y2(0) = y2(✓1) = 0 in (6) thus resulting ✓1 = ⇡. This
simple solution reflects the fact that any orbit running from ⌃ to ⌃ surrounding the focus, will
last exactly half time of the cycle because both focus are at ⌃ itself. Imposing also the symmetry
condition y1(✓1) = �y1(0), we obtain after some algebra an expression for the amplitude of the
limit cycle, as the crossing point of the limit cycle at ⌃, namely

Y1 = y1(✓1) = coth
⇣
��⇡

2

⌘
.
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(a) Q = 5 (� = �0.3535) (b) � = �1 (Q = 0.7071)

Figure 6. Waveforms of y1(✓) in red and of y2(✓) in blue, for the limit cycle.

In Fig. 5, the value of the normalized variable y1 at the switching condition, called here Y1, is
represented in front of the two parameters � and Q. It is worth noting that if the quality factor is
high enough, the expression Y1 ⇡ 4Q/⇡ is a reasonable approximation for the amplitude of the
steady oscillation. Also, if � is made negative enough, Y1 converges to its lowest value Y1 = 1.
Both asymptotic behaviors can be seen in the same diagrams. In Fig. 6, the normalized values
(y1, y2) for one cycle of the steady state oscillation have been represented for two different
parameters Q = 5 (� = �0.3535) and � = �1 (Q = 0.7071). Focusing on applications,
let us define a new variable y

R

to account for the relative load voltage. Thus, recalling that
y2 = !

r

i
L

Z0/Vg

and considering the voltage divider relation ↵ = R/R
S

between the load R
and the series equivalent R

S

we deduce that

y
R

=
i
L

R

V
g

=
↵y2

!
r

Q
, (8)

and for one of the two symmetrical half cycles in the steady state we deduce from (6)-(7) the
expression y2(✓) = (1 + Y1)e

�✓ sin ✓, and then y
R

(✓) = Y
R

(�)g(�, ✓) follows, in which the
constant Y

R

is a sort of amplitude and g takes care of the dependence on time. These terms are

Y
R

= �2↵�
⇣
1 � coth

⇣�⇡

2

⌘⌘
, g(�, ✓) = e�✓ sin ✓.
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ABSTRACT

We explore periodic and quasi-periodic (QP) vibration-based energy harvesting (EH) in a de-
layed nonlinear oscillator in which time delay feedback is inherently present in the system.
The EH system consists in a delayed Duffing-van der Pol oscillator coupled to an electric cir-
cuit through an electromechanical coupling mechanism. We assume that the delay amplitude
is modulated around a mean value with a certain frequency, and we consider the case of de-
lay parametric resonance for which the frequency of the modulation is near twice the natural
frequency of the oscillator. Application of the double-step perturbation method enables the
approximation of the amplitude of the QP vibrations which is used to extract power from the
harvester device. Results show that for small values of unmodulated delay amplitude, only the
periodic vibration can be used to extract energy, while for larger values of unmodulated delay
amplitude the periodic solution turns to unstable and only QP vibration can be used to extract
energy with better performance. Numerical simulation is conducted to support the analytical
predictions.
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1 INTRODUCTION AND MODEL DESCRIPTION

In EH systems, the limitation of the linear attachment has been overcome by considering non-
linear stiffness in the mechanical part of the harvester. In this case the EH capability is improved
[1, 2]. However, the EH performance provided by nonlinear attachments can suffer from insta-
bilities and jump phenomena near the boundaries of the stable branch of the frequency response.
To circumvent such instabilities, the idea of using QP vibrations is proposed to extract energy
from delayed self-excited harvester systems [3]. The concept of using delayed feedback vibra-
tion absorber has also been used to enhance EH capability [4]. The purpose of the present work
is to study the EH performance in a Duffing-van der Pol-type harvester device in which time
delay is inherently present in the operating system, as in milling and turning operations [5]. The
energy harvesting system consists then in a delayed Duffing-van der Pol oscillator coupled to
an electric circuit through an electromechanical coupling mechanism; see Fig. 1.

Figure 1. Schematic description of the EH system

The governing equation for the harvester system can be written in the dimensionless
form as

ẍ(t) + �ẋ(t) + �ẋ(t)x(t)2 + !2
0x(t) + �x(t)3 � �v(t) = ↵x(t � ⌧) (1)

v̇(t) + �v(t) + ẋ(t) = 0 (2)

where x(t) is the relative displacement of the rigid mass M , v(t) is the voltage across the load
resistance, � and � are the mechanical damping ratio, � is the stiffness parameter, � is the
piezoelectric coupling term in the mechanical attachment,  is the piezoelectric coupling term
in the electrical circuit, � is the reciprocal of the time constant of the electrical circuit, ↵ and
⌧ are, respectively, the feedback gain and time delay. In this study we assume that the delay
amplitude ↵ is modulated around a mean value such that:

↵ = ↵1 + ↵2 cos(!t) (3)

where ↵1 is the unmodulated delay amplitude and ↵2, ! are, respectively, the amplitude and the
frequency of the modulation. Note that the case where the nonlinear stiffness is absent (�= 0)
has been explored in [3] and the case of linear damper and unmodulated time delay was studied
in [6].

2 MAIN RESULTS

We investigate the response of the system near the delay parametric resonance for which the
frequency of the delay modulation is near twice the natural frequency of the oscillator. Appli-

2
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cation of the double-step perturbation method [7] enables the approximation of the amplitude
of the QP vibrations which is used to extract power from the harvester device.
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Figure 2: Vibration (a) and powers (b) amplitudes vs ↵1 for ↵2 = 0.25, ! = 2, � = 0.05,
� = 0.05, � = 0.2, � = �0.1, � = 0.05,  = 0.5, !0 = 1 and ⌧ = 5.2. Analytical prediction
(solid lines for stable and dashed line for unstable) and numerical simulation (circles).

In Fig. 2 is shown the variation of the amplitude of the periodic and the QP responses as
well as the maximum output power amplitudes (P

max

, P
maxQP

) versus the unmodulated delay
amplitude ↵1 and for ↵2 = 0.25. The boxes inset in the figures show time histories of the
amplitudes (Fig. 2a) and the power responses (Fig. 2b). It can be seen that for a small values
of delay amplitude ↵1, only the periodic vibration-based EH can be extracted. On the other
hand, for relatively increasing value of ↵1, the stable periodic solution disappear via saddle-
node bifurcation, while energy can be extracted from QP vibration with better performance
comparing with the periodic output power.
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ABSTRACT 
 

Smart composite structures with a fully distributed set of integrated piezoelectric transducers are 
used to demonstrate the feasibility of embedded Structural health monitoring (SHM). Indeed, the 
piezo ceramics elements have been directly integrated into the heart of the composite during the 
manufacturing process. Then, a Time-of-Flight method has been applied. This technique is based 
on the duration measurements of a wave propagation with a simple and low cost experimental 
setup. Integrated piezoelectric transducers are used for monitoring the behavior of the structure.  
In this research, special plates (with a piezo ceramics disk on each corner), made of glass fibre 
composite, are manufactured. Different kinds of damages are simulated on these plates, including 
holes with different diameters. Then a Time-of-Flight method is used for the SHM of these plates. 
Finally, the preliminary test results obtained on one plate are compared and discussed. 
 
Keywords:  Composite structure, Smart material, Piezoelectric transducers Integration, Health 
monitoring, Time-of-Flight method, Lamb wave. 
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1 INTRODUCTION 

Structural health monitoring (SHM) is a technology which combines advanced sensor technologies 
with intelligent algorithms to interrogate the ‘health’ condition of structures in real time or whenever 
necessary. SHM has been defined in the literature as the “acquisition, validation and analysis of 
technical data to facilitate life-cycle management decisions” [1]. The potential benefits of SHM 
technology include improvement of reliability and safety, enhancement of performance and 
operation, and reduction of lifecycle cost. 
Several techniques have been investigated for detecting damage in composite materials. However, 
Lamb wave based methods have recently re-emerged as a reliable way to detect and potentially 
locate damages [2-5]. These techniques have been implemented in several ways in the literature, 
including the use of separate actuators and sensors to monitor transmitted waves and/or reflected 
waves, and multipurpose patches which both actuate and sense. Each of these techniques offer their 
own advantages and drawbacks in detecting certain types of damage with various levels of 
complexity. 
This paper is focused on the structural health monitoring (SHM) of plates made of a glass fibre 
composite, by using a Time-of-Flight method. As lamb wave techniques provide more information 
about damage presence and severity than other tested methods (for instance, frequency response 
techniques), and provide the possibility of determining damage location due to their local response 
nature, this technique is selected. The paper is organized as follow. Section 2 shows the 
experimental setup and the experiment procedure. In Section 3, the results as well as the comparison 
of these results are presented and discussed.  Then the concluding remarks are given. 

2 EXPERIMENTAL PROCEDURE 

The idea is to manufacture test plates, then simulate different damages on this plate and interrogate 
the ‘health’ condition of the structure with a Time-of-Flight method. When the signal travels from 
the piezo-ceramics actuator through the region where there is a change in material properties. 
Consequently, some changes are observed in the response signals from the piezo-ceramics sensor.  

 
 

Figure 1. Samples to be tested - the Poisson’s plates 
 
The plates are instrumented with four piezo-ceramics, which are positioned at each corner of the 
plates, as shown in Figure 1. The characteristics of these transducers are given in [6]. The plates 
tested are 298 mm side and 2 mm thick with a gelcoat of 0.2 mm. The plates are manufactured in 
the Belfort-Montbéliard University of Technology (UTBM), France. These are laminated 
composites, composed of 6 layers of glass fibres and a polyester resin matrix. The technique of 
infusion is used as manufacturing method. The fibre volume ratio is about 35 to 40%. At the end, 
one layer of gelcoat is present on the top surface of the plates. The piezoelectric elements are placed 
between the first and the second layer. The layer of gelcoat is set as the reference for numbering of 
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the layers. Then, to simulate strong and calibrated damages, holes with different diameters are 
drilled in the plates as shows in Figure 1. The main idea is to evaluate the potentiality of a ToF 
technique with a clear damage. The selected diameters are 4.5mm, 6mm, 8mm, 10mm, 12mm and 
13mm, the holes were drilled in the same plate by increasing diameters and the measurement were 
done between two machinings. 
The Time-of-Flight method exploits the ultrasonic wave propagation properties and, particularly, 
Lamb waves propagation properties [8]. Such waves have the particularity to spread over long 
distances in the composite [9]. To generate and capture the wave trains, the piezoelectric transducers 
integrated in the composite are used. The transducers have a resonant frequency for the radial mode 
measured in air around 100 kHz [6]. Once incorporated into the composite by backing effect, the 
central frequency of this radial mode decreases up to 64 kHz in the analysed plates. Then the 
frequency-thickness product (f.h) is around 0.15 MHz.mm. The phase velocity and the group 
velocity of the symmetric mode S0 are then equivalent. So, it is possible to measure the S0 group 
velocity and use the formulas of extraction of the materials parameters developed for the phase 
velocity [8]. 
After a set of optimisation tests, a short number of sinusoidal bursts (1 to 3 cycles) are chosen as 
the excitation signals. The experimental setup to generate and measure the wave trains is similar to 
the setup described in [7]. A function generator (Keithley, 3390) is used to generate excitation 
signals via a miniature power amplifier (PiezoDrive, PDM200B). The signals are then captured via 
a digital oscilloscope (Pico Technology, PS 4424). 

3 RESULTS & DISCUSSION 

For the experiments, the sinusoidal bursts signals travel through the structure between two piezo-
ceramics actuator and sensor. A hole is drilled in the middle of this path (see Figure 1). The response 
signals obtained for the plate with different hole diameters are shown in Figure 2. 

 
 

Figure 2. Response signals for the plate with a hole of different diameters 
 
The time-of-flight from the actuator to the sensor has been recorded for each situation. At the same 
time, a Fast Fourier transform has been applied to deal with the data. The results are shown in Figure 
3. To analyse the influence of the hole diameter on the FFT, we have selected an analysis frequency 
of 64 kHz, at which the FFT amplitude is maximum. 
In Figure 3, the tendencies shown are quite clear for the Time-of-Flight vs hole diameter or the FFT 
amplitude at 64 kHz vs hole diameter. As it shows in the curve of FFT amplitude vs hole diameter, 
the vibration energy has a strong relationship with the damage index [10]. The bigger damage is, 
the weaker vibration energy will be, so the lower FFT amplitude will be. 
These results give a quite good reference for the future investigations. Along this way, it is possible 
to use a Time-of-Flight method in Structural Health Monitoring.  
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Figure 3. Tendency for different hole diameters 
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ABSTRACT

This short paper considers the control of a helicopter gearbox semi-active suspension. As the
future generation of helicopters will include variable engine RPM during flight, it is interesting
to consider implementing control on their suspension systems in order to always optimally filter
the main disturbance frequency. Here, a semi-active suspension based on the DAVI principle
is developed, simulated and tested with its control algorithm based on Bayesian optimization.
This control method based on the Bayes theorem is a trial/error algorithm allows to significantly
reduce the number of evaluations of the real objective function for a given set of parameters ✓.
Thus the system is capable to fastly determine its own optimal set of parameters to maximize
the objective function. The objective is to prove experimentally the ability of the Bayesian
optimization to lead the learning behavior of a semi-active resonant suspension.
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1 INTRODUCTION

Fuselage vibrations are a major problem in the design of helicopters. This paper will focus
on the development of a new active hybrid vibration absorber which reduces the effects of the
cyclic loads (n⌦ harmonics) on the helicopter structure due to the main rotor.

2 THE SEMI-ACTIVE DAVI

In 1976, Flannelly [1] presents an anti-resonant vibration absorber called DAVI which uses
a rigid arm carrying a flapping mass. The inertia of the bobweight mass generates an anti-
resonance at the characteristical frequency !

c

depending on some parameters : dynamic ampli-
fication, overall stiffness and flapping mass. Airbus Helicopters company developed during the
1990’s the SARIB c� suspension, a DAVI suspension integrated in the helicopter between the
MGB and the structure tuned to be as close as possible to the b⌦ frequency (b number of blades
and ⌦ the rotor speed).

With the arrival of variable engine RPM during flight, it is relevant to integrate some
actuation in a DAVI system in order to be able ”track” the b⌦ frequency and adapt the steady
state parameters of the suspension to the varying frequency of the disturbing input force. One
can control the DAVI dynamic amplification ratio by modifying the position of the bobweight
mass on its flapping arm as in figure 1 where m

f

represents the helicopter structure, m
b

is the
flapping mass, m

mgb

the main gearbox and rotor and k is the overall suspension stiffness. The
dynamic amplification ratio � is defined as c/a and has a direct influence on the anti-resonance
frequency !

c

:

!2
c

=
k

��(� � 1)m
b

(1)

Figure 2 shows the transmissibility H of the DAVI suspension for different values of �. It is
clearly visible that a suitable control of the variable c (position of the flapping mass) can modify
in flight the anti-resonance frequency.

3 THE BAYESIAN OPTIMIZATION

The Bayesian optimization [2] [3] is used for computing the maximum of expensive cost func-
tions. It is applicable when the estimation of the objective function for a particular case of x

i

is costly and possibly noisy. The ability of the algorithm to significantly reduce the number
of function evaluations before reaching the optimum value is due to the incorporation of the

2
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Figure 2: Transmissibility H(f) of the DAVI suspension for different values of �.

prior belief. This prior knowledge is used to determine the new input vector x
i

which will be
evaluated by making a trade off between exploitation (use of prior data) and exploration of the
search space. At each cost function evaluation, the algorithm computes an estimation of the
function f(x) for the complete search space ⇧ (x 2 ⇧).

From the prior knowledge of the cost function is computed the posterior distribution
which represents the updated beliefs about f(x). Then, the Bayesian optimization uses an
acquisition function to determine the next input vector x

i+1 and measure the process response
f(x

i+1).
The objective here is to adapt the dynamic amplification ratio � i.e. the position c of the

bobweight mass on the flapping arm for every solicitation frequency !0 2 [!
c

(c
max

); !
c

(c
min

)].
The input parameter x represents here the position c of the bobweight mass and the cost function
f(x) is mostly characterized by the acceleration level of the fuselage.

The strong assumption of the Bayesian optimization is that it is possible to consider the
function f(x) as a GP (Gaussian Process). For every input vector x, the GP will return the mean
m and the covariance k of a normal distribution over the possible values of f(x) as it follows :

f(x) ⇠ GP(m(x), k(x, x0)) (2)

In the Bayesian method, the choice of the covariance function is very important as it
determines the smoothness properties of the estimation of f(x). This smoothness is generally
controlled by one or more hyperparameters ✓. A wide variety of covariance functions has been
investigated in litterature, as in [4] we propose to use the Matern 5/2 kernel. To determine
the hyperparameters of this statistical model, the ARD (Automatic Relevance Determination)
method has been applied. The table 1 summarizes the main steps of the Bayesian optimization
with Auto Relevance Determination method described just before.

Bayesian optimization of f(x)
While optimize do
1 Prior knowledge available D1:i = {x1:i, f1:i}
2 Auto Relevance Determination of ✓

opt

(i) using gradient method
3 Computation of µ and �

2

4 Computation of the acquisition function EI(x) on the search space ⇧
5 Maximization of EI(x) and so determination of x

i+1

6 Evaluation f(x
i+1)

7 i = i + 1 and go to step 1

Table 1: Overview of the Bayesian optimization with ARD.

3
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Figure 3: Test setup scheme.

4 EXPERIMENTS

As explained previously, the system we control here with the Bayesian optimization is the semi-
active SARIB c� from Airbus Helicopters. The test setup represents an isolated MGB strut linked
to a semi-active DAVI bobweight arm. The figure 3 represents a diagram of the test bench (no
pictures allowed due to Airbus confidentiality policy), one can notice that the flapper arm is
linked by a fitting to a mass m

f

representing the helicopter structure. In order to keep all
movements in a plane, a mechanical parallelogram is added to the experimental set-up.

Three different learning sequences have been used to teach the program. We define a
learning sequence as the order of appearance of every frequency ! within the antiresonance
bandwidth of the semi-active DAVI [!

c

(c
max

); !
c

(c
min

)].
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Figure 4: Increasing sequence - suspension transmissibility.

The real optimal positions c
ref

(!) 8! 2 ⇧ are also computed to set a reference vector
d0. As a result (see 4 and 5), the Bayesian optimization always finds a solution acceptable for
the mass position giving a transmissibility around 0.45 for the worst results and 0.1 for the best
ones. In addition to the Bayesian optimization, it has been added a learning method to keep in a
database the ”good” positions tested for each frequency. The objective is to reduce the number
of iterations necessary to the algorithm to find the optimal position.

4
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5 CONCLUSION AND PROSPECTS

The main difficulties encountered during the development of the control algorithm were to deal
with the resonant behavior of the DAVI. Controlling a dynamic system near its anti-resonance
or resonance frequency implies fast and unstable phase changes which makes harder having
a clean and fine tuning. The fact that this optimization technique is based on a stochastic,
not deterministic model which is updated using prior knowledge on every measurement made,
presents a strong advantage in comparison to other semi-active control methods. There is no
need of a complex mathematical model of the system or prior identification.

Good results were achieved in terms of vibration isolation : a suspension transmissibility
going from 0.1 to 0.41 and no absurd final mass position c were observed in spite of the system
noise. The learning sequence order demonstrated to have a limited impact on the final results.

As a conclusion, control adaptivity, learning methods and auto-tuning of control para-
meters even without particular mathematical model of the system or prior asumptions are the
current keys for the future evolutions of the dynamics control field.
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ABSTRACT 
 

Laminated composite plates are frequently used in various aerospace, automotive and space 
applications. In such applications, undesired vibrations can be reduced by using active and passive 
vibration control methods. Integrating piezo-patches into such plates is an alternative way to damp 
the structural vibrations. However, accurate models are required to predict the dynamics of such 
plates when the piezo is attached to the host structure. In this paper, analytical modeling of 
composite plates with two surface-bonded piezo-patches in parallel shunted to a resistive load is 
presented using Rayleigh-Ritz method. The analytical model accounts for mass and stiffness 
contribution of piezo-patches as well as two-way electromechanical coupling effect. Furthermore, 
electromechanical frequency response functions obtained by the developed analytical model are 
validated by finite-element analysis in ANSYS. Finally, the performance of the shunt damping 
method on the composite structure for a range of resistive loads is demonstrated by the reduction 
in the displacement frequency response functions.  
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1 INTRODUCTION 

Thin composite plates are of interest in many engineering applications, for their superior mechanical 
characteristics such as high stiffness-to-weight ratio and low density. However, in harsh 
environments, they are exposed to severe vibrations which result in reduced structural life and 
eventually mechanical failure [1]. Piezoelectric patches integrated into such flexible structures can 
be utilized to passively damp the vibrations through shunting the piezo-patch electrodes with an 
electrical circuit [2,3]. Few analytical models have been proposed in the literature for vibration 
analysis of thin plates with surface-bonded piezo-patches [4,5]. In the reported works, only 
piezoelectric coupling effect is included in the analytical modeling, whereas mass and stiffness 
contribution of piezo-patches are ignored due to the low volumetric ratio of piezo-patches with 
respect to the isotropic plate (made of Aluminium). This assumption, however, does not remain 
valid for lightweight composite plates. Therefore, in this study, the effect of piezoelectric shunt 
damping on the composite plates is investigated through analytical modeling that accounts for mass 
and stiffness properties of the piezoelectric material and two-way electromechanical coupling. 
Moreover, the analytical model results and vibration reduction of the host structure using the piezo 
patches is validated by finite-element simulations in ANSYS.  

2 ANALYTICAL MODELING  

In this section, equations of motions for a composite plate with two surface-bonded piezo-patches 
are presented. Figure 1 shows the schematics of the electromechanical system where a pair of piezo-
patches are connected in parallel to a resistive load.  
 

 
Figure 1. (a) schematics of a composite plate with two surface-bonded piezo-patches, (b) 

cross-section view of the laminated composite (with four ply angles D���D���D���D�) where piezo-
patches are shunted in parallel to a resistive load. 

 
Applying Hamilton’s principle and using Rayleigh-Ritz method for modal analysis 

procedure [6], we obtain the following electromechanical equations for the two structurally 
integrated piezo-patches connected in parallel to a resistive load in the modal coordinates:  
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where )(tmnK  and )(tv  are the mechanical modal coordinate and voltage over across the resistive 
load. Here, kC )( p  is the equivalent capacitance for the kth patch and given by 

kkpkk hAC )/()()()( p
S
33p H (where S

33H , pA , and ph  are the dielectric permittivity, the piezo-patch 
area and thickness in z-direction, respectively). The Modal forcing input and the electromechanical 
coupling term can be expressed as: 
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here, 31e  is the effective piezoelectric constant, and ),( yxWU mnmn  are the assumed modes where 
Mm ,...,2,1 , Nn ,...,2,1  (M, N indicate the number of modes).  

It should be noted that mass and stiffness effect of piezoelectric patches are included in the 
modal analysis procedure using the following indicator function ),( yxP , which determines the 
area on the plate that is covered by the piezo-patch as 

> @ > @)()()()(),( 2121 yyHyyHxxHxxHyxP ���u���  (5)

where H denotes the Heaviside unit-step function.  
For the electromechanical frequency response functions (FRFs), one can substitute the 

harmonic forms of tjeFtf Z
0)(  , tj

mnmn eHt ZK  )( , and tjVetv Z )(  at steady-state into 
Equations (1) and (2), and obtain the displacement output to force input FRF as follows:  
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3 RESULTS AND DISCUSSIONS  

Figure 2 shows the electromechanical frequency responses (voltage and displacement 
outputs per unit force input) of the coupled system for validation of the proposed analytical model.  

 
Figure 2. Comparison of Analytical voltage and displacement FRF with the corresponding ANSYS simulations. 
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As it can be observed from the graph, the analytical solution based on Rayleigh-Ritz method 
agrees well with the ANSYS simulation results. The electrical resistive load value is taken as 1 kΩ 
in the presented FRFs. The vibration response shown in Figure 2 is measured at the center of the 
top-left quarter of the plate. The voltage FRF shows a cancellation for the second and fourth modes 
since the piezo-patches are located in the center of the plate. These charge cancellations can be 
explained by the in-phase and out-phase strain distribution that occurs in the area of the plate 
covered by the patches. This result show that, one should carefully choose the location of the patches 
for effectively reducing the vibrations at the target frequency such that no electrical cancellation 
occurs.  

4 CONCLUSION 

An analytical modeling of a laminated composite plate with surface bonded piezoelectric 
patches, in bimorph configuration, using Rayleigh-Ritz method was presented. Analytical solutions 
for electromechanical FRFs were validated against ANSYS simulation results. The analytical 
model accounts for mass and stiffness effect of piezo-patches on the composite plate along with 
two-way electromechanical coupling effect. It was shown that using the analytical model, one can 
correctly predict the vibration response of the plate in presence of shunted piezo-patches. 
Furthermore, an optimum resistance value can be obtained for maximum reduction of vibration 
level at a target excitation frequency.  
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S. Chesné1* and C. Collette2

1LaMCoS
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ABSTRACT

In this paper, we propose and validate a simple control law, dedicated to hybrid mass dampers
in order to improve stability and performance. A particular phase compensator is added to
the original velocity feedback to correct the dynamics of the actuator face to the one of the
controlled structure. The resulting system is hyperstable theoritically. The main interest of this
kind of devices is its fail-safe property which is essential for aerospace applications. Theoritical
analysis and experimentation illustrate this hybrid control device and its performances.
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1 INTRODUCTION

Usually, when inertial actuators are used to actively control structures, the resonance frequency
of the actuator is much lower than the fundamental resonance frequency of the controlled struc-
tures. The resulting device is called Active Mass Damper (AMD) and many control strategies
have been developped [1, 6, 9]. Some approaches consider the problem of the tuning and
the possible vinicity of the actuator resonance frequency to the one of the main structure. A
compensator in the feedback loop [4, 8] is introduced to activetly soften the actuator. But the
pole-zero cancellation principle on which they are based presents some known dangers. An-
other class of dampers called Hybrid Mass Damper (HMD), or Hybrid Vibration Absorber
(HVA) have recently appeared, trying to combine passive [5] and active vibration control. The
objectives are: (i) to increase the performance, (ii) reduce the consumption on the considered
bandwidth and (iii) to ensure a fail-safe behavior [2, 7] .

In this contribution, we propose a simple control law previously theoritically introduced
in [3]. We show that it improves the performance of classical hybrid dampers based on decen-
tralized velocity feedback techniques. Actually, a compensator is introduced in the control loop
to correct the phase of the actuator in order to become stable at the considered frequency. The
resulting system is hyperstable [3] and fail-safe.

2 THE ↵-HYBRID MASS DAMPER

The section briefly presents the basic principles of the ↵-Hybrid Mass Damper. More details
can found in [3].

Figure 1: (a) Bode and (b)root locus plots of sensor-actuator open loop transfer function for
Direct Velocity Feedback (black dashed line) and for ↵ controller using ↵ = !0 (continuous
black line). Transfer function H

↵

(s) in blue dotted line.

Consider a system with a resonant frequency of !0 =
p

k1/m1 = 1 rad.s�1 with-
out damping. To this system, a classical dynamic vibration absorber is associated (mass ratio
µ = 1%). Usually, AMD are used with Direct Velocity Feedback (DVF) law. A control law
proportional to the measured velocity of the main structure is generated to drive the actuator.

2
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The open loop transfer function and the root locus are plotted in fig 1 (black dashed lines). By
analyzing the stability margins, we see that the system is stable only at very low feedback gain.
One sees also on the root locus that the lower frequency pole goes immediately in the right half
plane, leading to instability. The closed loop system will always be marginally stable. This is
mainly due to the absence of zero between the pole of the TMD and the pole of the structure.

A simple alternative to recover stability is to adequately place a pair of zeros at the right
frequency. The controller is still a velocity feedback, however, a filter named ↵-controller is
added in the control loop [3]:

H
↵

(s) = g
(s + ↵)2

s2
(1)

The phase has been modified below the first resonant frequency (see its transfer function in
fig 1 (a), blue dotted line). The parameter ↵ is tuned to make the controller hyperstable. In
this study, its value is ↵ = !0. The rootlocus of the ↵-HMD is plotted in fig 1(b) (black
continuous line). We can see that the whole root locus plot is in the left half plane, meaning an
unconditional stability of the feedback system (infinite gain margin). More analysis and details
can be founded in [3].

Figure 2: Picture of the experimental set-up used to test the proposed controller and the
schematic of the control device

3 EXPERIMENTAL SET-UP

The structure and the control device are shown in Figure 2 The targeted mode is the first bending
mode of the beam. The control device is Micromega products initially designed for purely active
control (ADD-5N). Its reaction mass is 160gr, its frequency is around 21Hz and its damping of
⇠ = 11.9%. The main structure used for the validation is a cantilever steel beam (Length:
58cm, width: 10cm, thickness: 1cm). An accelerometer is fixed nearby the actuator to feed the
controller.

4 PERFORMANCES AND CONCLUSIONS

Figure 3 show the effects of the proposed HMD in term of FRF and integrated RMS value.
The first one shows the damping introduced by the control on the targeted mode and the second
graphic shows its wide range effect. Indeed contrary to passive TMD, more than one mode is
damped. Note that the damping on the first mode without any control is 0.24%; with the passive
device it is around 9% due to the high mass ratio, and with the ↵-controller it reaches more than
16% for both resulting peaks.

3
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Figure 3: (a) Frequency response functions and (b) Integrated RMS value [0� 500]Hz, without
control (grey), with passive TMD (black), with DVF (grey dotted line) and with ↵-controller
using various gain (g = 1 in blue, g = 3 in purple, g = 9 in red).

These figures validate the proposed robust hybrid mass damper. It combines two fea-
tures: an unconditional stability, and a fail-safe characteristic by modifying the classical DVF
law on a TMD.
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ABSTRACT 

 
Innovative technologies aim at reducing structural masses using composite materials. These new 
light structures are, however, very sensitive to vibrations. Originals disciplinarian fields such as 
metacomposites or structronics show up from this context in order to explore new vibratory 
stabilities and its applications in acoustical attenuations, health monitoring, or energy harvesting 
in order to give robustness and autonomy to subsystems. This paper focuses on an academic 
structure where a piezoelectric transducer frame works as a trap device. The latter concentrate 
the energy from vibrations to a place where an SSHI (Synchronized Switch Harvesting in 
Inductor) type harvesting device is located. After a presentation of the structure, and the 
conversion-extraction device, its capability to improve the harvested energy are verified in 
comparison with a purely passive structure. 
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1 INTRODUCTION 

In a context of new materials and architectures, fields as structronics or metacomposites aim at 
explore new vibrating stabilities for various applications such as energy harvesting. A standard 
harvesting system is hereby applied to a multimodal structure in coupling with a trap device. The 
methodologies and models have previously been tested and validated on a monomodal structure 
and are in accordance with the theory.  
All the results are presented in the case of the weak coupling of the structure, in other words, in a 
constant displacement case. That means the electronic parts of the system don’t affect the 
dynamics of the structural components.  

2 DESIGN OF TRAP DEVICE COMPOSED OF SHUNTED PIEZOELECTRIC 
CELLS 

The global geometry of the studied system and the piezoelectric trap device principle are hereby 
detailed. 

2.1 Structure of interest 
The figure 1 displays the structure of interest which consists in a 2.5m long cantilever beam. The 
two 0.6m long trap devices are composed of gradually varying parameters [1, 2] designed to trap 
the vibration energy in the 0.4m long trap zone of the structure where a harvesting device is 
placed. The background beam and the trap zone are made of aluminum. 
 
 

 
 

Figure 1. System geometry. 
 

2.2 Shunted piezoelectric cells network for trap device 
Above mentioned trap device can be achieved in different ways, designing geometry 

parameters or combinations of several ones. Here, the chosen approach is to modify the Young 
modulus. This parameter has to be continuous in order to avoid reflections in wave’s propagation 
[2]. In figure 2, the black solid lines show this decreasing in Young modulus from the outside to 
the inside edges of the trap devices. 

Due to the difficulty to make a continuously varying parameter all along the two trap 
devices, each one is divided into ten cells with identical geometrical properties. For each one, the 
target Yong modulus portion of curve is discretized (red crosses on figure 2) and materially made 
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using a piezoelectric patch. Each one of these patches is shunted in order to realize negative 
capacitances able to modify the system dynamics [3].  

 
 

Figure 2. Trap device design. 

3 ENERGY HARVESTING DEVICE 

 
As a first step, a very classical harvesting system is used [4]. It is composed of a diode bridge, a 
smoothening capacitor CR, the piezoelectrical capacitance C0 and a resistor R. The whole device is 
connected to a piezoelectric element placed at the centre of the trap zone. The time constant 
τ=RCR=10s in order to guaranty that the output tension Vs reaches its steady state in an honest 
amount of time.  
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Figure 3. Energy harvesting device. 
 

The tuning of the above electronic device to the natural frequency of interest of the 
structure implies each time a modification of the R value. CR has also to be changed for τ to 
remain a constant. These parameters finally allow computing the performance criteria; the output 
tension Vs and the harvested power Pstand: 

m
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Z
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R
VP s

ds

2

tan   (1) 

With the modal matrix) , the coupling coefficient D and for the generalized coordinate qm and a 
working angular frequency 0Z . 
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4 PERFORMANCES 

The studied system is multimodal with 20 modes but the presented work will focus on the 17th 
flexure mode at 151.46Hz of the structure which presents good coupling with the harvesting and 
trap devices. The excitation is made on the free end of the beam. Figure 4 gives the resulting 
performances. Vs and Pstand are displayed for both activated (red) and deactivated (blue) trap 
devices, in the case of weak coupling.  
 

 
 

Figure 4. Vs and P. 
 
 
The topology of the obtained curves fits with the ones from the literature [4]. The harvesting 
improvement due to the trap device activation can clearly be seen and reaches 0.52W for a 
2.26e4Ω resistor. That corresponds to 2.84 times the results obtained without trap. 

5 CONCLUDING REMARKS 

The improvement in adding a trap device to concentrate the mechanical energy in a place of the 
structure where the harvester is placed has been demonstrated on an academic multimodal system. 
Even if only weak coupling has been taken into account, results from strong coupling present 
some computation issues that will be addressed in further communications. 
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ABSTRACT

We present a novel control method achieving stable multiple-degrees-of-freedom electroacous-
tic resonators. Such broadband absorbers, composed of a feedback-controlled electrodynamic
loudspeaker, have many practical applications to real-world acoustic engineering problems,
such as low-frequency industrial noise reduction in the range of [20 - 200 Hz]. The proposed
control architecture combines a conventional microphone-based feedback control loop and a
current-driven direct acoustic impedance control scheme, proven to perform optimally in re-
cently reported acoustic impedance synthesis methods. This paper presents a methodology
for designing the transfer function to be implemented in the controller, after specifying a tar-
get multiple-degree-of-freedom acoustic resonator impedance. Numerical simulations presents
the expected acoustic performances, confirmed by experimental assessments in an impedance
tube.
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1 INTRODUCTION

Low-frequency noise is present everywhere in the environment, emanating either from trans-
portation facilities or industrial equipments. However, soundproofing is hardly achievable be-
low 200 Hz with conventional passive acoustic materials such as porous layers or Helmholtz
resonators [1]. Therefore, active control techniques have been investigated in the last decades
to identify novel soundproofing concepts capable of targeting this unaffordable frequency range.
The concept of “electroacoustic absorber” [2] encompasses loudspeaker system, namely a loud-
speaker in a dedicated cabinet, the electrical terminals of which can be loaded either by passive
components (RLC resonators [3]), or active ones (feedback control based on pressure and/or
velocity sensing). It has especially given rise to the more general concept of “electroacoustic
resonator” [4], that may present multiple-degrees-of-freedom (MDOF) characteristics. In the
following, we consider the situation where the loudspeaker is fed back with a current driven by
a given filtered version of the sound pressure on its diaphragm [5].

2 ACHIEVING MDOF ELECTROACOUSTIC RESONATORS

2.1 Model of the electroacoustic resonator

The transducer used in the following is an electrodynamic loudspeaker, that can be assimilated
to a single-degree-of-freedom oscillator (suspended diaphragm) mechanically driven by a voice
coil within a permanent and almost constant magnetic field. Figure 1 (left) highlights the me-
chanical part assimilated to a simple mass - spring - losses resonator, with mass M

ms

, spring
compliance C

mc

, and mechanical resistance R
ms

. It is assumed that all forces acting on the
transducer, especially those resulting from the total pressure p

t

, are small enough so that the
displacements remain proportional to applied forces.

Figure 1: Left:Schematic representation of the closed-box electrodynamic loudspeaker;
right:Block diagram of the electroacoustic resonator.

If we denote S
d

the effective piston area and Bl the force factor of the moving-coil
transducer, the equation of motion of the loudspeaker membrane (Newton’s second law) and
the mesh law can be written in the Laplace domain (s = j2⇡f , where f is the frequency):

S
d

P
t

(s) = Z
m

(s)V (s) + Bl I(s) (1)

where V (s) represents the membrane velocity, P
t

(s) represents the total sound pressure
at the membrane surface, combination of the incident and reflected waves, and I(s) is the current
flowing through the voice coil. Here Z

m

(s) = sM
ms

+ R
ms

+ 1/(sC
mc

) is the mechanical
impedance of the closed-box loudspeaker. We can also define the acoustic impedance Z

s

(s)
presented by the diaphragm of the loudspeaker, considered as an electroacoustic resonator, as:

Z
s

(s) =
P

t

(s)

V (s)
. (2)
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2.2 Acoustic impedance control scheme

In the present concept, the loudspeaker is electrically fed with a current-driven amplifier, through
a controller providing a filtered version of pressure P

t

at the diaphragm through transfer func-
tion ⇥(s), as illustrated on Figure 1 (right). Then, to assign a prescribed acoustic impedance
Z

st

at the electroacoustic resonator, the transfer function can be easily derived from Equation1:

⇥(s) =
I(s)

P
t

(s)
=

S
d

Z
st

(s) � Z
m

(s)

Bl Z
st

(s)
. (3)

With this setup, the closed-form expression of the achieved acoustic impedance at the electroa-
coustic resonator is given by:

Z
s

(s) =
P

t

(s)

V (s)
=

Z
m

(s)

S
d

� Bl⇥(s)
. (4)

2.3 Assigning a prescribed MDOF impedance

The MDOF resonator acoustic impedance considered here consists in the parallel arrangement
of n one-degree-of-freedom acoustic resonators as:

Z
st

(s) =
1P

n

k=1 j! M

ms

⌫2k�1S

d

+ R
st,k

+ 1
j!

1
S

d

⌫2k

C

mc

(5)

where R
st,k

represents target acoustic resistances, and ⌫
i

are real coefficients.

3 SIMULATION AND EXPERIMENTAL ASSESSMENT

The electrodynamic loudspeaker is a Peerless SDS-P830657, in a closed cabinet of volume
V

b

= 10 dm3 (see Table 1). The various control parameters (C0, C2 and C3) are given in Table
2. The theoretical acoustic impedance achieved with each control configuration is processed
according to Equations 3-5, and compared to experimental results measured in an impedance
tube, as illustrated on Figure 2. The experimental results are in a good agreement with the
analytical model, and show the significant extension of the resonator bandwidth when coupled
with the proposed MDOF control architecture.

Parameter Notation Value Unit
Effective piston area S

d

151 cm2

Moving mass M
ms

12.9 g
Mechanical resistance R

ms

1.23 N.s.m1

Mechanical compliance C
mc

260.79 µm.N1

Force factor Bl 5.98 N.A1

Table 1. Peerless SDS-P830657 Thiele-Small parameters.

4 CONCLUDING REMARKS

The present concept aims at achieving MDOF resonators out of a conventional loudspeaker
and a simple control law. The control architecture allows broadening the resonator bandwidth
compared to the passive resonator (configuration C0). It is also possible to assign different
values of acoustic resistance R

st,k

at prescribed frequencies f
k

= ⌫2k�1

⌫2k

1
2⇡

p
M

ms

C

mc

, which is

3
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Table 2. Control parameter values of one (C0), two (C2), and three (C3) DOF resonators.
⌫1 R

st1 ⌫2 ⌫3 R
st3 ⌫4 ⌫5 R

st5 ⌫6

(-) (Pa·s·m�1) (-) (-) (Pa·s·m�1) (-) (-) (Pa·s·m�1) (-)

C0 1.00 R
ms

/S
d

1.00 - - - - - -
C2 2.16 67.01 2.36 4.09 55.24 22.64 - - -
C3 1.86 85.99 2.86 1.32 54.81 1.11 3.07 57.32 21.03
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Figure 2: Bode plot of the specific acoustic impedance of the electroacoustic absorber computed
(solid lines) and measured (dotted lines) in cases C0, C2, and C3.

useful in the context of room modes damping [6]. This concept is readily applicable to low-
frequency noise reduction
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FEMTO-ST Institute

CNRS/UFC/ENSMM/UTBM
Department of Applied Mechanics

25000 Besançon, FRANCE
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ABSTRACT

The use of acoustic liners in aviation industry is a quite common solution for reducing the en-
gines acoustic emissions. Although the current solutions based on single or multilayer liners
are efficient and compact for the mid and high frequencies, noise mitigation in the low frequen-
cies would require large volumes, making the integration in the nacelle difficult. Moreover,
the passive liners are tuned to attenuate fixed frequencies and are optimized for specific flights
regimes. An active electroacoustic skin based on a distribution of loudspeaker and microphones
is presented here. The acoustic impedance is controlled by an embedded electronic system and
can be changed in real time. Compared to a conventional passive liner, it is shown that the
resonance frequency of the active skin can be adjusted to better match the flight phase and that
the performance is better at low frequency. An experimental campaign in a wind tunnel has
been performed and is presented here.
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1 INTRODUCTION

The reduction of noise pollution due to civil aviation has become a major challenge for aircraft
manufacturers. The use of passive liners inside aircraft nacelles is commonly used to attenuate
the acoustic emissions of aircrafts but the efficiency is not broadband and the attenuation in low
frequencies is poor. Moreover, the optimum acoustic impedance of the liner evolves according
to the flight phase. Active noise control strategies have already shown their effectiveness [1, 2].
The solution proposed here lies in the use of an active coating for acoustic impedance control.
A prototype of this system is presented hereinafter.

2 ACOUSTIC IMPEDANCE CONTROL

The active skin presented here is made of an arrangement of unit cells used to synthesize a
target acoustic impedance. A unit cell is the assembly of a speaker (actuator), four microphones
(sensors) and an electronic control stage. The strategy consists in estimating the pressure at the
center of the cell by averaging the signal of the four microphones and to act on the velocity field
by the action of the membrane of the speaker.

The equation of control has been established in [3] and is based on the Thiele/Small
speaker model [4]:

H
loc

(p) =
S

d

Bl

 
1 �

M
ms

p2 + R
ms

p + 1
C

ms

µ1Mms

p2 + S
d

R
at

p + µ2

C

ms

!
(1)

With :

• p : Laplace variable;

• S
d

: Effective piston area;

• Bl : Electromechanical conversion factor ;

• M
ms

: Mass of the mobile assembly;

• R
ms

: Mechanical resistance;

• C
ms

: Compliance of membrane suspensions;

• R
at

: Target acoustic resistance of the mobile assembly;

• µ1, µ2 2 [0; 1] : Control parameters.

This control law is used to alter the dynamics of the electrodynamic actuator and would
idealy synthesize a purely resistive acoustic impedance when µ1 = µ2 = 0. For stability
considerations, these parameters can never be null, which would be equivalent to cancel the
mass and the compliance of the loudspeaker. However µ1 controls the apparent mass of the
speaker and µ2 its compliance.

3 EXPERIMENTAL DEVELOPMENTS

3.1 Prototype of active skin

The prototype is made of thirty 50x50mm cells. Each cell is the assembly of a speaker and
each corner is equipped with a microphone (see figure 1). The current through the speaker is

2
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controlled by a Howland current source [5]. A micro-controller computes the equation driving
the dynamic of the electric current in the speaker reel depending on the average measured pres-
sure. The output current is updated at a rate of 50kHz. The computations are performed locally
but all the cells are connected to an interface card through a serial bus. Thus the parameters of
all the cells can be changed and local features (RMS pressure and RMS current) are accessible
from a computer.

Microphones

Loudspeaker

Figure 1: Picture of the active skin prototype comprising 30 loudspeakers and 120 microphones.

3.2 Power consumption

With the control off, the active skin has a power of 12.5W, including 0.2W per micro-controller.
The electronics is able to feed each speaker with a current of 0.25A i.e. a power of 1.25W. The
maximum electric power is then 50W. In practice, with a controlled noise of 110dB RMS, only
5mA are required per speaker so the overall power is 20W for 30 cells.

3.3 Wind tunnel

The active skin prototype has been wall mounted in the wind tunnel FDF of the Netherlands
Aerospace Centre (NLR). The test bench is shown in figure 2. The difference of acoustic inten-
sity between the upstream and the downstream reverberant rooms gives the IL (insertion loss).
The IL evaluates the acoustic energy absorbed by the active skin. The acoustic source is placed
in the upstream room (downstream configuration) or in the downstream room (upstream con-
figuration). Tests have been run with air flow up to Mach 0.15. The flow noise has saturated
the microphones for flows faster that Mach 0.15. The figure 3 shows the results with flow in
downstream and upstream configuration and the results without flow for a target resistance of
⇢c

2 . Mitigations up to 16 dB have been measured. The resonance frequency of the speaker is
denoted f0. The flow does not affect significantly the efficiency.

Figure 2. Experimental validation in a wind tunnel (NLR,the Netherlands).

3

86



MEDYNA 2017 25-27 Apr 2017, Sevilla (Spain)

IL
 (d

B)

Frequency (Hz)

Local control, Rat = ρc
2

Mach 0.15 upstream, µ1=µ2=0.6
µ1=µ2=0.4

Mach 0.1, downstream,µ1=µ2=0.6
No flow

,

f0 1.5 f0 1.75 f01.25 f00.75 f0

2dB

Figure 3. Insertion Loss for a target resistance Rat = ⇢c

2 with and without flow.

4 CONCLUSION AND PERSPECTIVES

The prototype presented here is an active skin able to synthesize specified acoustic impedances.
It aims at replacing passive liners in aircraft nacelles and has been tested in a wind tunnel
with airflow up to Mach 0.15. Insertion Loss up to 16 dB have been measured. The acoustic
impedance of the skin is re-programmable in real time so adaptive strategies can be implemented
to best match the phases of flight.
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ABSTRACT

We propose an innovative method for the local inverse characterization of sandwich panels using

a simple experimental procedure based on single shot pulse measurements. The method exploits

a typical wave conversion phenomenon called bending-to-shear transition, producing a local

energy velocity maximum within the transition bandwidth. Analytic expressions are derived for

the first wave transition and used to retrieve skin’s tensile modulus and equivalent honeycomb

core’s shear modulus from the transition frequency and the maximal group velocity. A simple

iterative procedure is described to identify the transition frequency by comparison of the time

delays between the pulse source and single measurement point. The group velocity can then

be advantageously estimated using First Phase Arrival (FPA) times. A carbon fiber-reinforced

sandwich panel with Nomex honeycomb core is considered for case study. The proposed method

exhibits considerably reduced measuring and post-processing times, while experimental results

are in good agreement with static measurements and the results from the Inhomogeneous Wave

Correlation (IWC) method.
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1 INTRODUCTION

Modelling sandwich structures in vibroacoustic environments is a challenging task due to the
di�culty to perform accurate models of composite structures in the medium frequency range.
Although the literature is abundant on mechanical characteristics of sandwich panels, the mate-
rial properties of a sandwich structure can change significantly depending on the manufacturing
process, or the panel location considered. It is therefore crucial to perform a thorough charac-
terization, rather than rely on material values reported in literature. Besides, the values obtained
using static measurements can result in considerable discrepancies in the vibroacoustic range. In
a context of increasing need for reliable and cost-e�ective characterization techniques, a number
of developments were made for sandwich structures. One can cite the work of Karakoc and
Freund [1] on the experimental determination of the compliance matrix of Nomex structures, or
the identification technique proposed by Matter et al. [2] for evaluating the elastic and damping
properties of sandwich laminates with soft cores from modal analyses.In composites, several
studies have been conducted on the use of high-frequency waves to retrieve elastic constants
from energy velocity measurements [3] with remarkable accuracy. However, the rapid devel-
opment of the so-called "meta-structures", involving sti�ened or locally resonant components
distributed along periodic patterns yields considerable challenges in terms of dispersion analy-
ses, hence for the use of these high-frequency techniques. Model-based inverse identification of
the equivalent material properties in medium frequencies was also investigated. The Inhomo-
geneous Wave Correlation (IWC) method was developed for the identification of the dispersion
curves. Material estimation is based on the wavenumber measurement technique developed by
McDaniels and Shepard [4]. These methods however require to measure and post-process the
entire displacement field to extract the k-space, leading to expensive and time-consuming char-
acterizations. This paper presents a wave-based characterization technique for sandwich panels
in the medium frequencies based on single-shot measurements [5], where complex scattering
e�ects can be avoided. It combines the advantage of involving a simple experimental set-up
with the need for local or in-situ characterizations procedures.

2 TRANSITION ANALYSIS: THEORY AND SIMULATIONS

Consider the propagation of flexural waves in a symmetric sandwich plate along the in-plane
direction ✓, where k is the directional wavenumber k✓ = f (µ, S✓,D✓). Assuming the rotation
inertia is negligible compared with the shear e�ects and the bending sti�ness per unit width of
the skins are small in comparison with the one of the plate, the dispersion relation becomes:

k2 =
µ

2S
©≠
´
!2 + !

s
!2 +

4S2

µD
™Æ
¨

(1)

where S = hcGc

✓
1 + hs

hc

◆2
and D ' Eshs

✓
h2

c
2
+ hchs +

2h2
s

3

◆
are the transverse shear rigidity

and bending sti�ness of the plate, µ is the mass per unit area, while hs hc Gc and Es denote
the skin’s and core’s thickness, shear coe�cient and Young modulus, respectively. The group

velocity reaches a local maximum when
@cg
@!
= 0 admits a solution, resulting in the following

equation:
!2⌦ �⌦3 + 2!2

0!�
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= 0 (2)

2

89



MEDYNA 2017 25-27 Apr 2017, Sevilla (Spain)

The solution !T =
2S

p
3µD

provides a definition of the so-called transition frequency. Note that

the maximal velocity, cmax =
4
3

r
2S
3µ

is independent of the bending sti�ness D of the plate.

Material Thickness Density (kg.m�1) Young modulus (GPa) Shear modulus (MPa)
Skin 0.3 mm 1451 Es = 81 Gs = 2780
Core 25 mm 53 Ec = 5.23 Gc = 50

Table 1: Dimensions and material characteristics of the sandwich beam. Note that the core is
described as an homogeneous medium. The beam’s width is ly = 10 mm and the damping is not
considered in this model.

A numerical case-study is considered for the sandwich waveguide described in Table 1.
The group velocity is estimated using tone burst signals of amplitude U0 = 1 µm involving n0

cycles at the frequency f0 with Hanning window defined for t  n0
f0

by: U0 sin
✓
⇡ f0t
n0

◆
sin (2⇡ f0t)

u(t) = U0 sin
✓
⇡ f0t
n0

◆
sin (2⇡ f0t) (3)

Noteworthy, the velocities shown in Figure 1 are in very good agreement with analytical
results. The accuracy is good, considering the frequency spectrum bandwidth of the excitation
signals. Using the proposed wave speed measurements results in a 2.1% overestimation of the
shear S coe�cient. The transition is observed at 1.8 kHz at the velocity cmax = 831.6 m.s�1.
This yields:

Etrans = 81.16 GPa and Gtrans = 50.04 MPa (4)
which is is very good agreement with the exact material parameters shown in Table 1.
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Figure 1: (a) Transient FEM simulation of a short monochromatic wave pulse, pulsation is
4000 Hz, propagation is considered along 3 m. (b) Dispersion curves of the sandwich waveguide:
comparison with FEM simulations using group velocity measurements.

3 EXPERIMENTAL RESULTS

This method based on transition and maximum velocity measurements is tested on a 60 cm ⇥
288 cm sandwich panel made of a 10 mm-thick Nomex honeycomb core involving a 3.2 mm cell
size, while propagation is considered in the W-direction. The core is surrounded by 0.6 mm-
thick Hexforce skins with multi-axial carbon-reinforced fibres mixed with SR1700 epoxy resin.

3
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The density of the skins is ⇢s = 1451 kg.m�3 and the core’s density is measured using the
overall panel’s weight ⇢c = 99 kg.m�3 (manufacturer: 96 kg.m�3). The experimental set-up
consists in a shaker producing wave pulses and a measurement point located at 1 m from the
excitation. Results from the Inhomogeneous Wave Correlation (IWC) method and the proposed
characterisation strategy are compared in Table 2 with the manufacturer’s data based on static
measurements on a di�erent sample. It shows a very good accuracy compared with other wave-
based method, considering that the proposed method only involves two measurement points.

Parameter IWC method Manufacturer Proposed method
(67 points) (static) (2 points, ToF)

E (GPa) 62 70 69.8
G (MPa) 37.8 [30 – 38] 36.5

Table 2: Comparison of the estimated parameters obtained by two wave-based methods and
manufacturer’s values.

4 CONCLUDING REMARKS

To summarize, the paper presents a definition for the transition phenomenon using the existence
of a local energy velocity maxima within the wave transition bandwidth and an in-situ procedure
for measuring e�ective mechanical parameters of sandwich plates in the vibroacoustic range,
described in Figure 2.

submit wave pulse

at frequency ωn

measure time 
of flight Tn

condition:
Tn > Tn-1 yes

no
S = (27µ / 32) cmax²

D = 4S² / (3µ ωn-1²)
increase

ωn+1 = ωn + δω

Compute velocity: 
cmax = d/Tn-1 

Figure 2. Experimental procedure summarized as a flow diagram.
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ABSTRACT 
 

The human hearing system captures acoustic waves in air that are transmitted to the cochlea 
where are converted in nerve signal. Meanwhile, at the cochlea, some sensory cell are active 
provoking sound transmission in the reverse direction. These called otoacoustic emissions are 
measured in the ear canal as diagnostic method. Forward and reverse transmission mechanisms 
are complex being a matter of research. Its study presents great difficulty, either by experimental 
or numerical methods.  
A simplified experiment has been designed to evaluate both mechanisms. It consists of a system 
with the basic elements (air, tympanic membrane and ossicular chain).The present paper presents 
results corresponding to a previous numerical study. Methodology is described, it is based in 
previous work. Main results are shown in terms of modal analysis and sound pressure fields.  
Comparing with the behavior of a membrane , the presence of the umbo adds stiffness and mass 
to the system. Results prove that the effect of the mass is more significant, increasing the number 
of modes present in the range of frequency of interest. Comparing forward and reverse 
mechanisms, the main difference is on the side of the stimuli, similar to the opposite side. 
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1 INTRODUCTION 

The human hearing system is a complex mechanical system intended to capture acoustic waves in 
air and transmit them to the cochlea responsible for the transduction in a nerve signal. In its basic 
behaviour sound is collected  by the pinna (ear) and conducted through the ear canal to the 
tympanic membrane (TM). The TM transforms the acoustic waves in mechanic vibrations which 
are transmitted through the ossicular chain to the oval windows on the cochlea. There, an acoustic 
wave is propagated in the fluid displacing the basilar membrane where sensory cells are placed 
(hair cells). These cells produce the nerve signal. This is the forward transmission mechanism. 
Part of these cells (outer hair cells) present motility capabilities. This active mechanism enhances 
the sensitivity of the transduction and produces sound inside the cochlea (otoacoustic emissions, 
OAEs). This wave is transmitted to the ear canal. This is the reverse transmission mechanism. 
OAEs can be measured at the ear canal and is the base for different diagnostic techniques.  
Forward and reverse transmission mechanisms are not symmetric and both are matter of research 
currently. Its study, either by experimental or numerical methods [1,2,3], presents great difficulty 
due to the complexity of the system and the coupling of different phenomena. So a simplified 
experiment has been designed to evaluate both mechanisms. It consists of a system where the 
basic element are present (air, TM and ossicular chain) and can be controlled. In the present paper, 
results corresponding to a previous study based on a Finite Element model are shown. 

2 EXPERIMENT DESCRIPTION 

An scheme of the experiment is displayed on Fig 1. It is based in previous works where a 
membrane was subject to a sound stimuli and its response measured by different methods [4,5]. 
The membrane is supported by a baffle that blocks sound to the opposite side.  

 
Figure 1. Experiment setup. 

 
An additional piece is added to the membrane. It represents the part of the malleus bone in contact 
with the TM (umbo). This is a simplified way to represent the effect of the ossicular chain. With 
this system, forward and reverse mechanism can be modelled. When the system is subject to 
sound stimuli, displacement can be obtained at the tip of the umbo (Forward transmission, Fig 
1b). Alternatively, a force or displacement can be applied at the tip and membrane motion and 
sound pressure can be measured (Reverse transmission, Fig 1c).  
Dimensions resemble the human system. Diameter is 1 cm and thickness 100 um. The umbo 
extend to 2/3 of the diameter. The umbo high is 0.5 cm and the thickness 0.3 mm. Stimuli is 
applied at a distance of 1 cm from the membrane. The mechanical properties of the material are: 
density 1200 Kg/m3, Poisson´s ratio 0.35 and Young´s modulus 2 GPa. 

3 NUMERICAL METHODOLOGY 

A brief description of the methodology will be made. It follows previous works and details can be 
consulted in references [4,5]. The FE model is shown in Fig 2 with a detail of the membrane-
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umbo model in Fig 2b. It is composed by three parts, a rigid solid (baffle and sound source), an 
elastic body (membrane-umbo system) and the fluid surrounding. The solid domain is considered 
as a rigid body and is represented by the correspondent motion constraint (as rigid surfaces).   
 

  
Figure 2. Finite Element Model. 

 
The others two domains conform the numerical model, the elastic domain corresponding to the 
membrane-umbo system and the fluid domain represents the surrounding air. A coupled fluid-
structure interaction problem is implemented in their contact areas. The fluid is bounded by an 
sphere to represent open field condition. Its surface is meshed with an element which represents a 
fluid domain that extends to infinity. The speaker is modeled as a rigid cylinder with dimensions 
similar to the real one. Symmetry is applied and only half problem is modeled. The fluid is 
meshed with acoustic elements and the membrane with eight nodes solid element.  
The influence of other modeling parameter (mesh size, element formulation, sphere size...) has 
been analyzed and carefully selected. Especial care is paid to the mesh size, selected according to 
previous studies [5]. An harmonic analysis has been done for a range of frequencies from 0 to 20 
kHz. Additional modal analysis has been done to obtain modal shapes and frequencies.  

4 MODAL ANALYSIS 

Modal analysis provides a first sight on the response of the system. Mode shapes are displayed on 
Fig 3 and frequencies in Table 1. The membrane follows the classic pattern. Membrane-umbo 
modes show more irregularity. Unless the first frequency is similar (aprox 2.5 kHz), the other 
modes tend to be lower with more modes present in the range of frequency of study. This means 
that the stiffness increase is cancelled by the mass added. 

 
Figure 3. Modal shapes. Membrane (a) and Membrane-Umbo (b) 

 
mode 1 2 3 4 5 6 7 8 9 10 

Membrane 2.56 5.33 8.78 10.1 12.8 15.4 17.5 21.5 22.7 28.2 
Membrane-Umbo 2.4 2.9 6.3 8.1 10 10.7 13.1 14.4 16.7 17.2 

Table 1. Modal Frequencies (kHz). 

94



MEDYNA 2017  25-27 Apr 2017, Sevilla (Spain) 
 

 

4 

 

5 RESULTS 

Many variables can be obtained (velocity, sound pressure). Sound pressure fields are one of the 
most relevant. On Fig. 4, sound pressure is plotted along lines normal to the membrane (shown in 
Fig 1) with a double spatial and frequency domain. Spatial z axis corresponds to the distance to 
the membrane, placed at z=0, negative values are closer to the stimuli. The different behaviour are 
easily visualized. Comparing (a) and (b), the presence of the umbo is manifest with a higher 
complexity in the response due to the higher number of modes present in the range of frequency 
of interest. Comparing forward (b) and reverse (c) behaviour, it can be observed how the response 
is symmetric in the reverse case, and very similar to that obtained in (b) for the sound transmitted 
to the opposite side of the stimuli.  

 
Figure 4. Sound pressure. Membrane (a), Membrane-Umbo forward (b) and reverse (c) 

 

6 CONCLUDING REMARKS 

A simplified numerical model to simulate the forward and reverse sound transmission mechanism 
has been build. This model will be used to adjust proper dimensions to facilitate the experiment. 
The presence of the umbo adds stiffness and mass to the system. Results prove that the effect of 
the mass is more significant, increasing the number of modes present in the range of frequency of 
interest. Comparing forward and reverse mechanisms the main difference is in the response on the 
side of the membrane where the stimuli is present. 
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ABSTRACT 

 
Sound transmission in human hearing is easy to understand at low frequencies but at higher 
frequencies the tympanic membrane (TM) presents complex vibration patterns. They have been 
studied experimentally with holography and numerically with Finite Element models. These 
models need proper material properties to be valid. Particularly, the Young's Modulus of the TM 
is a key parameter. A broad range of values has been obtained depending on the methodology 
used (20 to 300 MPa). Controversy exists about its correct value. Passive prestrain can be argued 
as a cause of differences. It is present on dynamic tests but not in static tests. 
 In this paper, modal analysis is used to check the potential effect of prestrain as the cause of the 
higher stiffness observed. As direct model update is difficult due to the complexity of the system a 
methodology based on comparison of modal shapes with experimental patterns observed with 
holography will be applied to identify prestrain level. 
Different FE models are employed to obtain modal values. Prestrain provides similar shapes but 
frequencies proportional to the prestrain (stiffness). Comparing with experimental patterns at 
high frequencies a prestrain value can be identify coherent with the properties commonly 
accepted (E=32 MPa). 
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1 INTRODUCTION 

At low frequencies, sound transmission in human hearing is easy to understand. The Tympanic 
Membrane (TM) captures acoustic waves and by means of a piston-like motion transfers air 
sound pressure waves into the cochlea. However, at higher frequencies the TM motion is not so 
simple, appearing complex vibration patterns. These patterns have been studied experimentally 
with techniques as holography. Rosowski et al. [1] established a qualitative description based on 
the pattern observed and related with the range of frequency where they were present. They 
considered a simple pattern when only one maximum displacement zone was observed (below 2 
kHz), complex pattern when more than one maximum appeared (2 to 8 kHz) and ordered pattern 
when a high number of maximum spread along the membrane (above 8 kHz).  
The other alternative of study is numerical simulation. Finite Element (FE) models have been 
used as a tool to study the behaviour of the system [2,3]. Nevertheless, uncertainties regarding the 
material properties limit the conclusions. This is particularly significant in the case of the study of 
the TM. Many experimental works have been devoted to the determination of the Young's 
Modulus of the TM. Most of the results obtained are in the range 20 to 40 MPa, being the more 
accepted value 32 MPa. Some are based on tension tests on small samples and other use different 
indentation techniques. Fay et al. [4] suggested that these values could be underestimated; the 
main difference in their methodology was that it was based on the dynamic response of the TM. 
By using composite laminate theory and correlating experimental dynamic wave length patterns 
they suggested values from 100 to 300 MPa.  
There exists controversy about the correct values for this parameter. One of the reasons of this 
higher stiffness value could be found on the potential effect of prestrain on the membrane. It 
would be present on dynamic tests but not in static tests. Passive prestrain has been named by 
several authors but no quantitative estimation has been made.  
In the present paper, modal analysis is used to check the potential effect of prestrain on the 
dynamic response of the TM. Direct model update is difficult due to the complexity of the system 
[2,3] and the experiment itself [1,5]. So a methodology based on comparison of modal shapes  
with experimental patterns observed with holography will be applied to identify prestrain level. 

 
Figure 1. Finite Element Models. TOS model (a) and simplified model (b). 

2 NUMERICAL METHODOLOGY 

Two different FE models will be shown. The first one includes all the element of the middle ear, it 
will be referred as the Tympanic-Ossicular System (TOS) model (Fig 1a). The second one, only 
include the TM and the approximate effect of the manubrium (Fig 1b). 
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The TOS FE model was built with a geometric model of the different components, they were 
meshed and additional components and boundary condition added. The anatomic measures and 
functional properties were based on published data [2,3]. TM Young Modulus is 32 MPa. 
Regarding the simplified model (Fig. 1b), most of the component has been removed. The 
connection with the manubrium is modelled with shell elements but the mechanical properties 
represent the inertia and stiffness of the ossicular chain. These equivalent properties has been 
obtained comparing with the TOS model. A key difference is that the membrane has been meshed 
with a higher number of elements to increase the accuracy at high frequency. 

3 MODAL ANALYSIS 

A modal analysis of the TOS was made as reference. Some selected mode shape has been drawn 
in Fig. 2a. Different types of modes are present, some reflect a TM vibration pattern and the 
classic piston-like motion (modes 11 and 13). Modes 14 and 25 correspond to the transition to 
complex pattern and mode 29 represent the ordered pattern. The results of the modal analysis of 
the simplified model are on Fig. 2b. It can be seen the equivalence between both system at certain 
modes (with different numbering). Mode 7 is the first complex patterns. Modes 11 represents the 
transition to ordered pattern. Finally, mode 50 correspond clearly to the ordered pattern. The small 
element size used in this model to mesh the TM captures these modes accurately. At this 
frequency range, the absence of the ossicular chain has a low influence, so for the purpose of the 
present study this simplified model is acceptable.  

 
 

Figure 2. Modal shapes. TOS (a) and simplified model (b) 

4 RESULTS 

The simplified model has been used to evaluate the influence of passive prestrain in the 
membrane. It is an aspect of the system with direct influence on the natural frequencies. An 
homogeneous isotropic strain has been considered for the whole membrane, ranging from 0.1% to 
1% (H11 = H22 = 0.001-0.01, in the plane of the TM and H33 = -2H11). Modal analysis has been 
repeated for different values of prestrain. Modal shapes are similar but frequencies increase 
proportionally to the prestrain level. Natural frequencies are plotted in Fig. 3 in terms of the mode 
number. We can see how the reference values (E = 32 MPa, black triangle, no prestrain) for the 
simplified model are coincident with the complete system (TOS, white circle).  
Observing these results at lower frequencies is difficult to establish clear differences. But, if we 
focuses on the higher modes, some distinctions can be done comparing with the experimental 
observation. Considering mode 50 as a reference, this type of pattern has been detected in human 
at frequencies above 8 kHz [1], in the case without prestrain, this pattern appears at 6 kHz that 
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could be considered very low and erroneous. Following this, the case pst = 0.3% could be 
considered more realistic. This observation cannot be considered a closed result as the increase of 
the elastic modulus has the same effect. A different combination of elastic modulus and prestrain 
provides similar responses. However, it point out to the dynamic analysis as a tool to clarify these 
effect instead of static tests. Modal shapes comparison is a limited first step procedure that must 
be followed by the direct numerical-experimental comparison of the response of the system 
including the fluid interaction. Although some methodological aspect must be solved first [5]. 
 

 
 

Figure 3. Tympanic Membrane modal frequencies with different prestrain (pst) level  

5 CONCLUDING REMARKS 

Supported on experimental observation with holography techniques, prestrain has been evaluated 
on the TM. It causes an stiffness increase difficult to distinguish from the effect of the elastic 
modulus of the material. This could be the reason for the lack of agreement of its estimation.  
Comparing modal shapes with experimental patterns, the appearances of complex patterns at 
higher frequencies can be used to check a valid value for the properties assigned to the model. 
Modal shapes comparison can be considered an starting step to be followed by direct numerical-
experimental comparison of the response of the system. 
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ABSTRACT

The identification of structural forces acting on plate coupled with an acoustic cavity from an
acoustic measurement is presented in this paper. An energy-based method called simplified en-
ergy method (MES) has been presented to predict the radiation of the plate coupled with an
acoustic cavity at high frequency range. This paper proposes to use this energy approach to
solve inverse structural problems to identify the structural sources thanks to the inverse formu-
lation of the method (IMES). Example concerning different acoustic measurement points are
presented to validate the proposed method.
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1 INTRODUCTION

The identification of structural forces acting on structures from operating measurements is an
important topic that has been treated by several researchers. Nevertheless, direct measurements
of sources are not feasible to quantify the position of the exciting forces. As a result, an inverse
process for estimating the exciting sources is often employed to solve the problem. In the
range of medium and high frequencies numerical methods as the finite element method (FEM)
and the boundary element method (BEM) present limits when the frequency is increased. For
that, the energy methods based on energy quantities are often used. Among these methods the
simplified energy method (MES). The direct theory formulation has been applied in various
domains including beam [1], membrane and plates [2] and acoustic applications [3]. An inverse
energy flow method (IMES) has been developed for acoustical application [4] and plate [5], and
for a complex structure modeled with a set of assembled plates [6]. The main novelty of this
paper is to develop this inverse method in order to detect the structural force applied in plate
coupled with an acoustic cavity through a measurement data of the acoustic energy field.

2 DIRECT MES FORMULATION

The simplified energy method is a vibro-acoustic method developed for the purpose to predict
the energy density distribution for structural acoustic problem in high frequency ranges. This
method is based on a description of two local energy quantities: the energy density W is defined
as a sum of the kinetic and potential energy densities and the energy vector

�!
I which is the

energy flow inside systems. The energy W
s

on the structure is defined as the sum of the primary
source ⇢

s

(direct field) coming from the excitation point S, and the fictitious sources �
s

coming
from the boundary P of structure as shown in Figure 1.

Figure 1. System decomposition.
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The acoustical energy W
a

radiated from the structure is located at the excitation points S and
structure boundaries P . In addition, according to the assumption that propagative waves are
uncorrelated, the acoustical energy W

a

at any point M
a

inside the cavity is the sum of energy
radiated from the excitation sources W exci

a

and energy radiated from the structure extremity
W edge

a

:
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where
W exci

a

(M
a

) =

Z

⌦
s

%
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SM

a

)G
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(S, M
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)dS, (3)

and
W edge

a

(M
a

) =

Z

⌦
s

�
a

(P, �!u
PM

a

)G
a

(P, M
a

)dP. (4)

3 INVERSE MES FORMULATION

This section focuses on developing an inverse MES formulation for a plate coupled with an
acoustic cavity, by applying a discrete format of the acoustic energy equation. The IMES for-
mulation aims to invert the matrix formulation of Equation. (2). The structural force applied
in plate can then be estimated and localized from an acoustic measurement. It is expressed as
follows:

P struc = S+
a

. W
a

(5)

where + is the pseudo inverse, W
a

= W exci

a

+ W edge

a

and S
a

= Sexci

a

+ Sedge

a

. Matrix S
a

can be well-conditioned, but is often ill-conditioned, which will disturb the results. In the next
parts, we studied the matrix S

a

inversion influence on the numerical results.

4 NUMERICAL RESULTS

This section deals with numerical tests of different cases in order to validate the presented
formulation. The presented system is a structure which consists of a plate (⇢

s

= 7800 kg/m3, ⌫

Figure 2. Boundary conditions.

= 0.3, E = 210.109 Pa) coupled with an acoustic cavity (⇢
a

= 1.3 kg/m3 , c
a

= 340 m/s). The
structure is a rectangular plate, their lengths are L = 1 m, l = 0.8 m and thickness h = 3.103

m, clamped on their extremity and damped with coefficient ⌘
s

= 1 %. The acoustic cavity is
undamped and with dimensions (L = 1 m, l = 0.8 m, H = 0.3 m) as shown in Figure 2. The
plate is excited with an input power P

in

= 1.551 W/m2, at point S given by (0.45 m, 0.45 m,
0). The numerical simulation methodology presented in Figure 2 consists of implementing the
inverse energy flow approach IMES when using a set of density energy prediction based in the
finite element method FEM modelled using the finite element software COMSOL multiphysics
(FEM/IMES simulation). This example deals with the influence of acoustic measurements in
the detection and quantification of the vibration source. A new numerical methodology to
identify the loads acting on the structure using FE method was presented in this example. A
more realistic test case was then considered. The first step consists in subdividing a plane

3
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Figure 3. Flow chart of numerical methodology.

parallel to the plate with a distance e = 0.05 m, into nine areas, and placing a microphone in the
middle of each area. In fact, the n

M

a

= 9 acoustic measurement were distributed as shown in
Figure 4.

(a) (b)

Figure 4. FEM/IMES Simulation for d
x

= 0.33 m and d
y

= 0.26 m
.

A color map of the estimated power repartition in plate was drown in Figure 4. From a
first view, the highest value of power was estimated with a value equal to 0.8949 W/m2. The next
step consists in distributing the same number of microphone near the highest power surfaces
with an equal distance d

x

= d
y

= 0.09 m as shown in Figure 5. As seen in this figure, a good
input power prediction is observed. The results show that the amount of source information
increases as the measurement point is so close from the source. Therefore, it is preferable
that the distances between source and nearest measurement points are as short as possible.
Moreover, it seems that choosing a good disposition of acoustic measurement is quite important
to estimate the input force. Finally, this section confirmed that the present method tends to
estimate the input force in the structure for a few number of acoustic measurements, and can be
applied for industrial problems, such as aeronautics and automotive industry.

4
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(a) (b)

Figure 5. FEM/IMES Simulation for d
x

= d
y

= 0.09 m.

5 CONCLUSION

In this paper, numerical results are presented in order to localize the vibration source from
acoustic measurement. The new IMES formulation based predictive tool has been first de-
veloped. Several test cases involving different measurement points and external forces were
considered. The inverse solutions were compared to results given by the direct MES and FEM
simulations. The obtained results confirm that the proposed approach exactly estimates the
excitation force with a low density of measurement points.
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ABSTRACT 
 

The present work is intended to introduce a stochastic acoustic optimization of Tuned Mass 
Damper (TMD) parameters used to control the internal sound induced by random vibrations of a 
flexible structure coupled to a cavity filled with air. Assuming linear behavior of the entire vibro-
acoustic system, the modal interaction approach can be used and the control, made in the low 
frequency range, can be performed considering the root mean square acoustic pressure (RMSAP) 
as the objective function to be minimized. Indeed, in presence of random excitation applied to the 
flexible structure, the acoustic pressure measured at a given location into the cavity can be 
characterized by its RMSAP. A spectral analysis has been made over different bandwidth values 
and the RMSAP is evaluated. Depending on the bandwidth parameter, used to evaluate the 
objective function, two kind of control has been defined: (1) the broadband control, 
corresponding to small values of the bandwidth parameter, and (2) the narrowband control 
corresponding to large values of the bandwidth parameter. The numerical investigations showed 
that for the coupled mode dominated by an in-vacuo structural mode, a broadband control allows 
obtaining satisfactory performance and the TMD has been acting as a dissipative device. In the 
opposite, for the coupled mode dominated by a rigid-walled cavity mode, a narrowband control is 
more efficient and the TMD has been acting as a highly reactive device.    
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1 INTRODUCTION 

The potentialities of the TMD device in structural vibration mitigation [1] as well as in the internal 
sound control are recognized. The performance of such device strongly depends on its parameters 
and in the present work a new stochastic optimization strategy based on an acoustic criterion is 
presented. The strategy consists to find the optimum TMD parameters as well as the optimum 
location, minimizing the RMSAP measured at a given location into the cavity. The numerical 
investigations showed that the proposed strategy can deal with the two kind of coupled modes (i.e. 
those are dominated by the structure and those dominated by the cavity [2]).  

2 GOVERNING EQUATIONS, THE OPTIMIZATION STRATEGY 

 

 

 

 

   

 

 

 

 

 

 

Figure 1. The TMD device attached to a flexible plate coupled to a cavity 

Figure 1 shows a TMD with mass Tm , a natural frequency TTT mk Z  and a damping ratio 

TTTT mc Z[ 2 , attached to a flexible plate (with a thickness h ) coupled to a cavity, which is in 
turn, filled with air. The stationary zero mean white noise excitation zF  is applied at 

� �T, FFF yx r  whereas the TMD is attached at � �T, ccc yx r . The dimensions of the system are as 
shown in Figure 1. Let Ns  and Na  be the number of modes considered in the analysis for the 
structure and the cavity; by assuming linear behaviour and light proportional damping in the 
structure and the cavity [2, 3], the modal interaction approach [2] can be used and the governing 
equations can be written in modal coordinates as follows: 

zFTΦKqqDqM  �� ���  (1) 

where � �TTT ,, Tzpwq  , w  and p  are the (Ns×1) and the (Na×1) vectors of the modal participation 
factor, respectively; Tz  is the displacement of the TMD; � �00ψφΦ F , Fφ  is the (Ns×1) 
vector of the plate mode shapes computed at force location � �FF yx ,  and 0ψ  is a (Na×1) vector of 
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is the density of air, 0c  is the celerity of sound in air , m/  and n/  are the structural modal mass 
and the modal volumes of the cavity, respectively; yx llS u ; cφ  is the )1( Nsu  vector of the 
plate mode shapes calculated at TMD location � �cc yx ,  and m[ , n[  are the damping ratios of the 

Cavity  Plate   

TMD  
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plate and the cavity, for a given modes “m” and “n”, respectively; nmC  is the coupling matrix [3]; 

»
»
»

¼

º

«
«
«

¬

ª

�

���
 

TcT

n

cTnmccTm

kk

kSk

0φ
0K0
φCφφK

K

TTT

,  
»
»
»

¼

º

«
«
«

¬

ª
/ 

�

�

mmm
2ZK , 

»
»
»

¼

º

«
«
«

¬

ª
/ 

�

�

nnn c
2

2
00

1 Z
U

K . It 

can be noted that readers can refer to [2, 3] for further details about the model. Let )(~ Zq , )(~ Zw , 
)(~ Zp , )(~ ZTz  and zF~  be the finite Fourier transform of q , w , Tz  and zF  respectively. The 

Fourier transform of both sides of Equation (1) yields to � � zFj ~~ T12 ΦKDMq �
��� ZZ . The 

modal acoustic pressure )(~ Zp  is given by zF~)(~ TYΦp  Z , where Y  is the )1( ��u NaNsNa  sub-

matrix extracted from the matrix � � 12 �
��� KDM ZZ j  by taking the Na  rows corresponding to 

the modal acoustic pressure )(~ Zp . The power spectral density (PSD) of the acoustic pressure at a 
given location ar  into the cavity and for a force location Fr  can be expressed as follows 

FFFaFapp SHS 2
~~ ),,(),,( rrrr ZZ   , where FFS  is the constant PSD of the white noise force applied 

to the plate and )()()(),,( T
FaFaH rΦYrψrr ZZ  ; )( arψ  is the )1( Nau  vector of the acoustic 

mode shape calculated at location ar  (microphone location). Once the acoustic PSD response is 
obtained, the stochastic acoustic optimization strategy based on the RMSAP can be formulated as 
follows:  

Find T),,( cTT rd [Z   to minimize  RMSAP= ³ 2

1
),,,(),,( ~~

Z

Z
ZZV dS FappFap drrdrr  (2) 

   The evaluation of the objective function depends on the bandwidth > @21,ZZ 'f  
therefore two kind of control have been defined: (1) the narrowband control, corresponding to 
small bandwidth parameter, and (2) the broadband control, corresponding to large bandwidth 
parameter. The performance of the TMD device will depend on this parameter.     

3 NUMERICAL STUDY  

The numerical values of the vibro-acoustic system are taken, m5.0 xl , m3.0 yl , m1.1 zl , 

mm3 h ; the plate has a Young’s modulus Pa 1007 9u E  , a density -3kg.m 0270 sU  and a 
Poisson’s ratio 3.0 X  ; 3

0 Kg.m 21.1 � U , 1
0 m.s 344 � c , 21 Ns  and 102 Na . The mass of the 

TMD is taken 2% of the total mass of the plate; -12 HzN 1.0 u FFS , T)875.0,1.0,35.0( � ar and 
� �T05.0,05.0 Fr . The frequency range of interest is taken [0, 220 Hz] where it has been observed 

two resonant coupled modes corresponding to Hz59.1081  Y  and Hz52.1592  Y . The first mode 
is dominated by the in-vacuo structural mode (1,1) whereas the second is dominated by the rigid-
walled cavity mode (0,0,1).   

Table 1 shows the optimum TMD parameters and their corresponding optimum locations 
for different bandwidth parameters f'  for the both resonant modes of interest. The inspection of 
the optimum damping ratios in Table 1 demonstrate that for the mode dominated by the in-vacuo 
structural mode ( 1Y ), the TMD device acts as a dissipative device whereas it acts as a highly 
reactive device when the mode dominated by the rigid-walled cavity mode ( 2Y ), is controlled. 
The obtained optimum TMD locations are always in the vicinity of the anti-node point of the in-
vacuo structural mode (1,1). This result is predictable because both coupled modes ( 1Y  and 2Y ) 
involve the same in-vacuo structural mode (1,1).  
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In Figure 2 the PSD responses, for different f'  are presented when the two modes are 
separately controlled.        

Targeted frequency  )Hz(f'  (%)*
T[  )Hz(*

Tf  )m(*
cx  )m(*

cy  )Pa(*
pV  

Hz59.1081  Y  
2 0.010 110.897 0.240 0.149 0.003 
20 1.160 110.694 0.243 0.149 0.123 
40 13.45 110.919 0.253 0.151 0.328 

Hz52.1592  Y  
2 0.693 155.554 0.192 0.147 0.008 
20 0.010 175.472 0.261 0.156 0. 125 
40 0.010 184.877 0.275 0.156 0.210 

Table 1. Optimum TMD parameters for different bandwidth control. 

The inspection of Figure 2 (a) shows that a reduction of 27.5 dB can be reached when a 
broadband control ( Hz40 'f ), of the targeted frequency 1Y , is achieved. A narrowband control 
produces two others peaks and the performance of the TMD device is less desirable. In Figure 2 
(b), it’s shown that a narrowband control ( Hz2 'f ) allows good performance of the TMD where 
a reduction of 20.6 dB is reached.       
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Figure 2. PSDs responses for different bandwidth parameters; (a): Hz59.1081  Y , (b): 

Hz52.1592  Y    

4 CONCLUSIONS 

In the present work a stochastic acoustic optimization strategy of TMD parameters is presented in 
order to control, in the low frequency range, the internal sound induced by stochastic vibrations of 
a flexible structure. The obtained results showed that for the coupled modes dominated by the in-
vacuo structural mode, a broadband control is suitable to obtain satisfactory performance of the 
TMD, which has been acting as a dissipative device. In the opposite, for the mode controlled by 
the rigid-walled cavity mode, a narrowband control is more efficient in the internal sound control, 
where the TMD acted as a highly reactive device.      
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ABSTRACT 
 

It is known that, when the mechanical coupling between the components is weak, small 
imperfections in a periodic structure can induce vibration localization. Stochastic analysis of 
near-periodic coupled pendulums chain is discussed in this paper. Perfect periodicity of the 
system is disturbed by varying randomly the length of one of the pendulums which is considered 
as an uncertain parameter. Its randomness is modeled in a probabilistic framework by a random 
variable according to a given range of dispersion level. Stochastic effects on vibration 
localization in mistuned four coupled pendulums chain is investigated through statistical 
evaluations. To do so, the propagation of uncertainties is performed using the Latin Hypercube 
Sampling method. 

109



MEDYNA 2017  25-27 Apr 2017, Sevilla (Spain) 
 

 

2 

 

1 INTRODUCTION 

Mistuning, or disorder, resulting from material defects, structural damage, manufacturing defaults, 
etc., breaks the perfect arrangement of periodic structures and alters significantly their dynamic 
behavior. The structure then becomes nearly periodic or called mistuned and vibration localization 
could occur under certain circumstances [1]. Zhu et al. [2] studied localization in randomly 
disordered coupled beams and proved that the wave propagation and localization can be altered 
by properly adjusting the structural parameters. Recently, Malaji et al. [3] investigated the effect 
of mistuning on vibration localization in two coupled pendulums chain. The main purpose of the 
present study is to investigate the stochastic effects of uncertain mistuning on vibration 
localization in a coupled pendulums chain.   

2 MODEL 

The scheme of N coupled pendulums chain is illustrated in figure 1. The pendulums have same 
mass m, torsional stiffness kr and proportional damping constant c and are weakly coupled by 
translational springs kt . An external base excitation xg is applied to the system. 

 
 

Figure 1. Periodic coupled pendulums chain. 
 

The equation of motion of the nth pendulum is written as follows: 

� �2 2 2
1 12n n n n r n t n n n n gml cl k k a ml xT T T T T T� �� � � � � �  (1) 

To disturb the periodicity of the system, one pendulum is assumed to have slightly different length 
from the others. This mistuning is quantified by a length ratio nD  between the nth pendulum 
length and the nominal length. 
For simplification, dimensionless variables are defined as follows: 

2

0 2
0 0

;; ; ; ; ; ; gj t j t n tr
g g nn

r
n

Xl k ak ce x X e f
l ml m k l

Z Z ZT D Z K E
Z Z

 4       :   (2) 

where K  is the damping factor, E  the coupling factor and ² 1j  � . Eqs. (1) and (2) lead to: 

� � � �2 2 2 2
1 11 2 1...n n n n n n nj f n ND D K T E T T T D� �� �� �   : � :� :  (3) 

This system of equations is solved for each angular frequency of excitation : . 
 
 

3 NUMERICAL RESULTS 

Let’s consider a chain of four weakly coupled pendulums with 0.01K  , 0.005E  , 1f  .  
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If the pendulum chain is perfectly periodic, the dimensionless eigenfrequencies are Ω1=1.001, 
Ω2=1.003, Ω3=1.007, Ω4=1.009 and conformity occurs between the amplitude pairs (Θ1, Θ4) and 
(Θ2, Θ3) reflecting the symmetry of the chain. This symmetry is broken when 2 1.01D   
( 1 3 4 1D D D   ), as shown in figure 2.a. The dimensionless eigenfrequencies become 
Ω1=0.994, Ω2=1.003, Ω3=1.006, Ω4=1.008 and an amplitude mistuning occurs. The amplitude of 
the 2nd pendulum response is the highest with Θ2max= 128.18. 

 

 
 

Figure 2. a. Dimensionless amplitudes for 2 1.01D  , b. Variation of maximal dimensionless 
amplitudes due to variation of 2D  from 0.9 to 1.1. 

 
Small variation of 2D from 0.9 to 1.1 causes significant variation of maximal amplitudes as shown 
in Figure 2.b. The difference ΔΘmax between higher maximal amplitude and lower one is highest 
at 2 1.005D   ( ΔΘmax = 59.09)  between Θ2max and Θ1max. The symmetry between Θ2 and Θ3 is 
more disturbed than the symmetry between Θ1 and Θ4. 
For more realistic representation of imperfection, we suppose that 2D  is an uncertain parameter 
which varies according to: 

� �2 0 1D D G[ �  (4) 

where ξ is a Gaussian random variable, 0 1D   and δ is the dispersion value. 
The Latin Hypercube Sampling method is used with 1000 samples. The analysis of the trends in 
the output data (eigenfrequencies and amplitudes) is achieved by statistical evaluations: envelope 
(extreme statistics), dispersion (standard deviation / mean), skewness γ (distribution asymmetry) 
and kurtosis κ (heaviness of tail of the distribution). 

 

 
 

Figure 3. a. Dispersion, b. skewness and c. kurtosis of the stochastic dimensionless 
eigenfrequencies for 0 0.05Gd d . 

 
Figure 3 shows that the variation of Ω 1 and Ω 4 is much more important than the variation of Ω2 
and Ω3. This is illustrated through increasing dispersions (Figure 3.a).  Ω2 and Ω3 distributions are 
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fairly symmetrical (-0.5 ˂ γ ˂ -0.5, Figure 3.b). Nevertheless,  Ω1 and Ω4 are highly skewed with 
asymmetrical distributions (γ ˂ -1 or γ ˃ 1) which are heavier than those of Ω2 and Ω3 (higher 
kurtosis values for  Ω1 and Ω 4, Figure 3.c). 
The evolution of maximal amplitude with respect to δ is illustrated in figure 4. Higher dispersion 
is obtained for Θ2max as shown in Figure 4.a. Smaller and nearly similar dispersions are obtained 
for Θ1max and Θ3max since 1st and 3rd pendulums are coupled to the disturbed one. Smallest 
dispersion is obtained for Θ4max since the 4th pendulum is not directly coupled to the 2nd one. 
Maximal vibration localization is achieved for δm = 2.45% (Θ2max=130.30) and remains constant 
up to δ = 5%. At δ = 3.3%, dispersion of Θ2 reaches it maximum (24.44%) and decreases beyond. 
Up to δ = 3.3%, the Θ3max distribution has heaviest (highest κ, Figure 4.c) long tail to the left (γ ˂ 
0, Figure 4.b), meaning that Θ3max has the most tendency to decrease. 

 

 
 

Figure 4. a. Dispersion, b. skewness and c. kurtosis of the stochastic maximal dimensionless 
amplitudes for 0 0.05Gd d . 

 

4 CONCLUDING REMARKS 

Stochastic analysis of uncertain mistuning effects on vibration localization in near-periodic 
coupled pendulums chain was performed in this paper. Vibration localization reaches its 
maximum for a given dispersion level. Future work will consist in generalizing the proposed 
concept to Mdof near-periodic structures in order to extract the benefits of random imperfections 
in term of vibration localization. This denotes an interesting challenge for energy harvesting in 
presence of uncertainty, meriting particular attention. 
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ABSTRACT

In this paper, a piece of sandwich composite material’s mechanical parameters have been in-
vestigated to reveal the influence of its sound transmission properties using some Global Sen-
sitivity Analysis (GSA) methods. Particularly, the correlation among these variables, which is
caused by the core layer’s meso-structure designs, is taken into consideration. For this purpose,
some advanced Fourier Amplitude Sensitivity Test (FAST) algorithms are applied on the classic
Mead’s analytical sound transmission model. The test results show that the correlation and the
variation of meso-structures both can greatly change the influence of these mechanical para-
meters on the characteristic sound transmission properties, the transmisson loss, for example.
The statistics obtained in this research indicate that, in the industrial production process, the
importance of some variables’s uncertainty control should be re-evaluated when taking into
consideration their distribution dependence caused by different meso-structures.
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1 INTRODUCTION

In about recent 30 years, very fast development has been observed in the engineering research
and industrial applications of sandwich composite panels. These panels have great advantage
in their stiffness-to-mass ratio, leading to wide application in aeronautic and civil engineering,
which raises the importance of evaluating and improving their sound proof capacity. Produced
in high quantity and applied in various strict conditions, their quality control practices become
more important than ever in the design and production phase. There are some researches that
have been published with the implementation of some Global Sensitivity Analysis (GSA) meth-
ods, such as the one of Christen et al. [1]. But with the fast development of sandwich panels’
meso-structures[2], the correlation effects can no longer be ignored.

2 SOUND TRANSMISSION IN SANDWICH COMPOSITE MATERIALS

Considering a piece of material’s sound proof capacity, the transmission loss is a direct indi-
cator of energy attenuation for a sound wave propagating through the material with a certain
angle. For an analytical estimation, we prefer to use the classical Mead’s model[3] with some
corrections and simplifications by Clarkson and Ranky [4] . Under several assumptions and
approximations, the vibration equation can be represented in this form:

D
f

r6w � g0(D
f

+ D)r4w + m!2r2w � mg0!2w = r2p � g0p, (1)

then the structural impedance can be developed like this:

Z(!) =
(1 + i⌘)D

f

k6 + (1 + i⌘)g(D
f

+ D)k4 � m!2k2 � m!2g(1 � ⌫2)

i!(k2 + g)
. (2)

The TL can then be simply calculated with Z obtained for a certain acoustic angular frequency
!. In Equation (2), supposing that the geometric parameters are all pre-determined and k de-
fined as the wavenumber, the other variables can be related to 5 basic mechanical parameters:
E the faceplate Young’s modulus, G

xz

the core shear modulus in y-axis, G
yz

the core shear
modulus in x-axis, m the structural area density and ⌘ the structural damping factor. Among
them, E and mostly contributes to D and D

f

the structural and faceplate stiffness while G
xz

,
G

yz

and ⌘ mainly contribute on g the core shear stiffness factor.

3 MESO-STRUCTURE AND ITS MECHANICAL PROPERTIES

The meso-structure is a general conception for the porous design of sandwich panel’s core layer,
among which the honeycomb structure is the most often seen, as presented in Figure 1.

Figure 1. Sandwich panel with double vertical thickness honeycomb meso-structure

Limited to analytical models, only a small part of regular meso-structures can have sim-
ple expressions, including the double vertical thickness honeycomb structure, whose accurate

2
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analytical model is recently given by Malek and Gibson [5]. With this, we can evaluate the
approximate homogenized structural parameters G

xz

, G
yz

and m with some given geometric
values.

So, as G
xz

, G
yz

and m are all outputs of the meso-structural model, some correlations
may exist among them while E and ⌘ are preset to be independent. And here is the correlation
matrix obtained for this honeycomb structure:

2

66664

E G

xz

G

yz

m �

eta 1 �0.00 �0.00 0.01 �0.00
G

xz

�0.00 1 0.68 0.51 0.02
G

yz

�0.00 0.68 1 0.61 0.01
m 0.01 0.51 0.61 1 0.01
� �0.00 0.02 0.01 0.01 1

3

77775
, (3)

which indicates that the three variables are very positively correlated, especially for the two
shear modulus.

4 GLOBAL SENSITIVITY ANALYSIS WITH CORRELATED VARIABLES

In the domain of GSA, ANOVA (ANalysis Of VAriance) is one of the most mentioned system
of SA algorithms. It’s established on a high dimension expansion of the output’s variance,
supposing the model Y = f(x1, x2, ..., xn

), it could be uniquely decomposed into this form:

V (Y ) =
X

i

V
i

(x
i

) +
X

i

X

j>i

V
ij

(x
i

, x
j

) +
X

i

X

j>i

X

l>j

V
ijl

(...) + ... + V123...n

(x1, ..., xn

). (4)

Therefore, the definition of the first order sensitivity index is S
i

= V
X

i

(E
X�i

(Y |X
i

))/V (Y ),
where X�i

means all the inputs except X
i

. The index S
i

represents the ratio of variance of the
output Y explained by the input X

i

. Higher the value is, more important the uncertainty control
is for this variable.

In this research, the sensitivity analysis methods applied belong to Fourier Amplitude
Sensitivity Test (FAST) series, which have great advantage in calculation efficiency of first
order sensitivity indices. Its classical version the FAST was realized by Saltelli and Bolado [6],
but this one can not take variables’s correlation properties into consideration. So two advanced
algorithm with correlation are applied for comparison purpose, including the FASTC (proposed
by Xu and Gertner [7]) and the FAST-orig (proposed by author).

5 TEST RESULTS

As shown in Figure 2, three SA algorithms are applied on the Mead’s sound transmission model
with correlated variables generated by the double vertical thickness honeycomb meso-structure
for the frequency band from 100 to 10000Hz. Regarding the general form of these SI curves,
some basic acoustic knowledge can be verified: the dominant role of m the mass per area at low
frequency, and the importance of shear effect for mid-high frequency sound wave isolation.

Comparing the SA results obtained by FAST methods with (FAST-orig, FASTC) and
without (FAST) correlation design, some interesting phenomena can be observed. With strong
positive correlation among G

xz

, G
yz

and m, m becomes also significantly important at high
frequency while G

xz

and G
yz

are no longer negligible at low frequency. Stroked by their in-
crease of SI, ⌘’s importance is greatly compressed but no obvious change can be observed for
SI(E). It’s interesting to mention that though the mean value of G

xz

and G
yz

have huge differ-
ence because of the double vertical thickness, their SI curves have almost the same form with
or without correlation.

3
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Figure 2. SI curves for the 5 mechanical parameters on the transmisson loss

6 CONCLUSION

In this research, some interesting features are observed when GSA methods are applied on an
acoustic sandwich panel model with correlated mechanical parameters. As the correlation prop-
erties are generated by the sandwich core layer’s meso-structures, it might be very interesting
if various meso-structures can be tested. Also, for the sake of calculation efficiency, analyti-
cal models are chosen to be evaluated in GSA progress, some more convincible results could
be obtained if finite element simulation or even experimental data can be directly taken into
application.
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ABSTRACT 
 

Due to recent advances in automated manufacturing technology, the so-called tow-steered 
laminates, in which the fibers in the layers are deposited following arbitrary curvilinear paths, have 
become viable. A number of previous studies have demonstrated that tow-steered laminates can 
exhibit improved structural performance in terms of bending, buckling, vibration and aeroelastic 
behavior, as compared to traditional unidirectional laminates. The classical design strategy to cope 
with aeroelastic stability criteria, known as aeroelastic tailoring, consists essentially in stacking 
unidirectional fiber plies of different orientations. The application of aeroelastic tailoring to two-
steered laminates potentially opens new possibilities of performance improvement, since the fiber 
trajectories can be dealt with as additional design variables. On the other hand, the performance 
of composite structures is strongly influenced by manufacturing imperfections, which, in this study 
are regarded as uncertainties. The present paper is devoted to the numerical study of the influence 
of uncertainties affecting the fiber trajectories on the aeroelastic stability of tow-steered composite 
panels, including: stochastic sensitivity analysis, aiming at evaluating the impact of uncertainties 
on the flutter instability boundaries, and stochastic robust optimization, intended for minimizing 
this impact on the optimized aeroelastic behavior. The Classical Lamination Theory is adopted to 
model the layered composite plates, duly adapted to account for curvilinear fiber trajectories on 
each layer. The aeroelastic model is based on the Ritz method, with the aerodynamic forces modeled 
according to the supersonic piston theory. The flutter stability boundaries for designs obtained by 
using deterministic and stochastic optimization of a tow-steered plate are compared., confirming  
improvements in terms of  robustness against perturbations in the fiber trajectories.  
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1 INTRODUCTION 

3DQHO�IOXWWHU�LV�DQ�LQVWDELOLW\�FRQGLWLRQ�FDXVHG�E\�WKH�LQWHUDFWLRQ�RI�LQHUWLDO��HODVWLF�DQG�DHURG\QDPLF�
IRUFHV�JHQHUDWHG�E\� WKH� LQWHUDFWLRQ�RI�HODVWLF�SODWH�OLNH�RU�VKHOO�OLNH�VWUXFWXUHV�ZLWK�VXUURXQGLQJ�
VXSHUVRQLF�DLUIORZV�>�@���

5HFHQW�DFKLHYHPHQWV�LQ�DXWRPDWLRQ�KDYH�EHHQ�OHDGLQJ�WR�WKH�FRQWLQXRXV�LPSURYHPHQW�RI�
PDQXIDFWXULQJ�SURFHVVHV�RI�FRPSRVLWH�PDWHULDOV��,Q�SDUWLFXODU��$XWRPDWHG�)LEHU�3ODFHPHQW��$)3��
SURFHVV�FXUUHQWO\�HQDEOHV�WR�PDQXIDFWXUH�WKH�VR�FDOOHG�9DULDEOH�6WLIIQHVV�3DQHOV��963���ZKLFK�DUH�
FKDUDFWHUL]HG�E\�QRQ�XQLIRUP�ILEHU�GLVWULEXWLRQ�RYHU�WKH�SOLHV��$�SDUWLFXODU�W\SH�RI�963�DUH�WRZ�
VWHHUHG�SODWHV��763���LQ�ZKLFK�WKH�ILEHUV�DUH�GHSRVLWHG�IROORZLQJ�FXUYLOLQHDU�SDWKV���$V�FRPSDUHG�WR�
WUDGLWLRQDO�XQLGLUHFWLRQDO�FRPSRVLWH�ODPLQDWHV��763�FDQ�SRWHQWLDOO\�EH�GHVLJQHG�PRUH�HIIHFWLYHO\�WR�
FRPSO\�ZLWK�VWDWLF��EXFNOLQJ��YLEUDWLRQ�DQG�DHURHODVWLF�UHTXLUHPHQWV�>�@��2Q�WKH�RWKHU�KDQG��WKH�
SHUIRUPDQFH� RI� 763V� LV� VWURQJO\� LQIOXHQFHG� E\� PDQXIDFWXULQJ� LPSHUIHFWLRQV�� ZKLFK� FDQ� EH�
FRQVLGHUHG�UDQGRP�XQFHUWDLQWLHV�>�@��,Q�WKH�SUHVHQW�SDSHU��WKH�LQIOXHQFH�RI�XQFHUWDLQWLHV�DIIHFWLQJ�
WKH� ILEHU� WUDMHFWRULHV�RQ� WKH�DHURHODVWLF� VWDELOLW\�RI� WRZ�VWHHUHG�FRPSRVLWH�SDQHOV� LV�QXPHULFDOO\�
DSSUDLVHG��LQFOXGLQJ�VWRFKDVWLF�VHQVLWLYLW\�DQDO\VLV�DQG�VWRFKDVWLF�UREXVW�RSWLPL]DWLRQ���
�

2 AEROELASTIC MODEL OF TOW-STEERED COMPOSITE PLATES 

7KH�i�WK�SO\�RI�D�UHFWDQJXODU�763�RI�GLPHQVLRQV� s cu �LV�GHSLFWHG�LQ�)LJ�����LQ�ZKLFK�T��LQGLFDWHV�WKH�
ILEHU�DQJOH��DVVXPHG�WR�YDU\�DFFRUGLQJ�WR���
�

� � �
�

T TT T T�
 � �s

i ix x
s

� ���
� � � � � � ������

ZKHUH� iT �LV�WKH�RULHQWDWLRQ�DQJOH�RI�WKH�SO\�DQG� � s,T T DUH��UHVSHFWLYHO\��WKH�ILEHU�DQJOHV�DW� �x  �
DQG� x s ��,Q�)LJ�����U �LQGLFDWHV�WKH�DLUIORZ�YHORFLW\��
�

 
)LJ�����,OOXVWUDWLRQ�RI�D�W\SLFDO�SO\�RI�D�WRZ�VWHHUHG�ODPLQDWH��

�
$VVXPLQJ� WKDW� WKH� ODPLQDWH� LV�VXIILFLHQWO\� WKLQ�� LW� LV�PRGHOHG�DFFRUGLQJ� WR� WKH�&ODVVLFDO�

/DPLQDWLRQ�7KHRU\��&/7���DQG�WKH�WUDQVYHUVH�GLVSODFHPHQWV� � �w x, y,t �DUH�DVVXPHG�WR�EH�FRQVWDQW�
WKURXJK�WKH�SODWH�WKLFNQHVV��0RUHRYHU��HDFK�SO\�LV�DVVXPHG�WR�EH�LQ�SODQH�VWUDLQ�VWDWH��DQG�RWKHU�
K\SRWKHVHV�RI�.LUFKKRII¶V�SODWH�WKHRU\�DUH�DGRSWHG��1HJOHFWLQJ�LQ�SODQH�ORDGV��WKH�UHODWLRQV�EHWZHHQ�

PRPHQWV� ª º ¬ ¼
T

x y xyM M M�M DQG�FXUYDWXUHV� N N Nª º ¬ ¼
T

x y xy�κ IRU� WKH� ODPLQDWH�DUH�

H[SUHVVHG�DV�>�@��
�

� �T T , ,� �!1 2M D κ � ���

fU �
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,W�FDQ�EH�VKRZQ�WKDW�PDWUL[�D�FDQ�EH�H[SUHVVHG�LQ�WHUPV�RI�D�VHW�RI�lamination parameters��
GHILQHG�DV�IROORZV��h�LV�WKH�WKLFNQHVV�RI�WKH�ODPLQDWH��>�@��

�

^ ` � � � � � � � �^ `� �
� � � � � �

�� � � � �
h

h
W ,W ,W ,W z cos ,sin ,cos ,sin dz

h
T T T T

�

�
 ³ � ���

�

$V�IRU�WKH�DHURG\QDPLF�ORDGV��WKH�SUHVVXUH�LV�PRGHOHG�DV�IROORZV��DFFRUGLQJ�WR�WKH�PHWKRG�
SURSRVHG�E\�$VKOH\�>�@��NQRZQ�DV�ILUVW�RUGHU�SLVWRQ�WKHRU\��U�LV�WKH�IOXLG�GHQVLW\�DQG� fM �LV�WKH�
0DFK�QXPEHU���

�

�

� �

U' O f f

f

w w
  

w w�

Uw wP
x xM

� ���

�

$FFRUGLQJ� WR� WKH� $VVXPHG�0RGHV� DSSURDFK�� WKH� WUDQVYHUVH� GLVSODFHPHQW� ILHOG� LV�
DSSUR[LPDWHG�DV�D�OLQHDU�FRPELQDWLRQ�RI�WULDO�IXQFWLRQV��DV�IROORZV��

�

� � � � � � � � � �
� � �

m n N

i i j j k k
i j k

w x, y r x s y q x, y x, yI M K
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�

$IWHU�IRUPXODWLQJ�WKH�VWUDLQ�DQG�NLQHWLF�HQHUJLHV�DQG�DSSO\LQJ�/DJUDQJH¶V�(TXDWLRQV��WKH�
HTXDWLRQV� RI� PRWLRQ� DUH� IRXQG� LQ� WKH� IRUP� RI� VHW� RI� OLQHDU� VHFRQG�RUGHU� RUGLQDU\� GLIIHUHQWLDO�
HTXDWLRQV��WR�ZKLFK�WKH�IROORZLQJ�HLJHQYDOXH�SUREOHP�LV�DVVRFLDWHG��

�

� �O P� �  aK K M q 0 �� ���
�

6WDELOLW\�DQDO\VLV�LV�SHUIRUPHG�E\�LQVSHFWLQJ�WKH�HLJHQYDOXHV�P�IRU�LQFUHDVLQJ�YDOXHV�RI�WKH�
SDUDPHWHU�O��DVVRFLDWHG�WR�WKH�IORZ�VSHHG���

3 SENSITIVITY ANALYSIS AND ROBUST OPTIMIZATION 

7KH�VHQVLWLYLW\�LQGH[�RI�WKH�UHVSRQVH�y ZLWK�UHVSHFW�WR�D�UDQGRP�SDUDPHWHU� ip �LV�GHILQHG�DV��E����
DQG�V�����GHQRWH�WKH�H[SHFWHG�YDOXH�DQG�YDULDQFH��UHVSHFWLYHO\���
�

� �
� �

�

�
i

i
E y p

S
E y

V

V

ª º¬ ¼ 
ª º¬ ¼

�� ���

�

,Q�HYDOXDWLQJ������3RO\QRPLDO�&KDRV�([SDQVLRQ��3&(��LV�XVHG�EDVHG�RQ�WKH�XVH�RI�+HUPLWH�
SRO\QRPLDOV�IRU�WKH�H[SDQVLRQ�RI�*DXVVLDQ�UDQGRP�YDULDEOHV��

7KH�PXOWL�REMHFWLYH�UREXVW�RSWLPL]DWLRQ�SUREOHP�LV�GHILQHG�DV�IROORZV��
�

� � � �
� � � �

1
2

2

Minimize: 

Subjected to

flutter

flutter

min max

J E U

J UV

 �

 

d d

p

p

p p p
�� ���

�

ZKHUH� p �LV�WKH�YHFWRU�RI�GHVLJQ�SDUDPHWHUV���
7KH�FRQVWUXFWLRQ�RI�3DUHWR�IURQW�IRU�QRQ�GRPLQDWHG�RSWLPDO�VROXWLRQV�LV�FDUULHG�RXW�E\�XVLQJ�

D�PXOWL�FULWHULD�YHUVLRQ�RI�'LIIHUHQWLDO�(YROXWLRQ��'(��RSWLPL]DWLRQ�PHWKRG����
7KH� GHWHUPLQLVWLF� RSWLPL]DWLRQ� LV� GHILQHG� ZKHQ� WKH� REMHFWLYH� IXQFWLRQ� LV� VLPSO\�
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4 NUMERICAL RESULTS 

$�FRPSRVLWH�UHFWDQJXODU�VLPSO\�VXSSRUWHG�SODWH�ZLWK�s ����PP��c ����PP��FRQVLVWLQJ�RI�HLJKW�
JUDSKLWH�HSR[\�SOLHV�RI�XQLIRUP�WKLFNQHVV�t �����PP��7KH�PHFKDQLFDO�SURSHUWLHV�RI�WKH�SOLHV�DUH��

1E  �������*3D�� 2E  �����*3D�� 12G  �����*3D�� 12P  ������ U  ������$V�D�EDVHOLQH�FRQILJXUDWLRQ�
RQH�DGRSWV�D�XQLGLUHFWLRQDO��XQVWHHUHG��ODPLQDWH�ZLWK�VWDFNLQJ�VHTXHQFH � �� �� �� s�ª º¬ ¼ ��)RU�WKLV�
FRQILJXUDWLRQ��WKH�HYROXWLRQ�RI�WKH�QDWXUDO�IUHTXHQFLHV�DV�IXQFWLRQ�RI�SDUDPHWHU� O �LV�GHSLFWHG�LQ�
)LJXUH����WKH�FRDOHVFHQW�RI�WZR�RI�WKRVH�IUHTXHQFLHV�LQGLFDWHV�WKH�RQVHW�RI�LQVWDELOLW\��IOXWWHU��DW�
O ����î������

)RU�WKH�WRZ�VWHHUHG�FRQILJXUDWLRQ��IRU�ZKLFK�WKH�VWDFNLQJ�VHTXHQFH�RI�WKH�EDVHOLQH�SODWH�ZDV�
DOVR�DGRSWHG�� WKH�VHQVLWLYLW\�DQDO\VLV� IRU�SDUDPHWHUV� � �s ,, ,E ,E ,G ,T T P U0 1 2 12 12 � OHDGV� WR� WKH�UHVXOWV�
SUHVHQWHG�LQ�)LJXUH����)URP�WKHVH�UHVXOWV��SDUDPHWHUV� � �s,T T0 �ZHUH�FKRVHQ�DV�RSWLPL]DWLRQ�GHVLJQ�
YDULDEOHV��7DEOH���HQDEOHV�WR�FRPSDUH�WKH�UHVXOWV�RI�GHWHUPLQLVWLF�DQG�UREXVW�RSWLPL]DWLRQV���
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SUHVHQWV�ORZHU�PRGH�YDOXH�RI�WKH�IOXWWHU�VSHHG��EXW�D�VPDOOHU�GLVSHUVLRQ����
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5 CONCLUSIONS 

7KH�LQIOXHQFH�RI�XQFHUWDLQWLHV�DIIHFWLQJ�WKH�WRZ�DQJOHV�RI�ODPLQDWH�FRPSRVLWH�SDQHOV�RQ�IOXWWHU�VSHHG�
RI�WKHVH�ODWHU�ZDV�DVVHVVHG��ERWK�LQ�WHUPV�RI�VWRFKDVWLF�VHQVLWLYLW\�DQDO\VLV�FRPELQH�ZLWK�3RO\QRPLDO�
&KDRV�([SDQVLRQ�DQG�UREXVW�RSWLPL]DWLRQ��7KH�VWXG\�ZDV�PRWLYDWHG�E\�WKH�QHHG�RI�GHDOLQJ�ZLWK�
LPSHUIHFWLRQV�LQWURGXFHG�E\�WKH�PDQXIDFWXULQJ�SURFHVV��7KH�RSWLPL]DWLRQ�UHVXOWV�GHPRQVWUDWHG�WKDW�
WKH�GHWHUPLQLVWLF�RSWLPL]DWLRQ�ZDV�FDSDEOH�RI�LPSURYLQJ�WKH�IOXWWHU�VSHHG��EXW�WKH�RSWLPDO�VROXWLRQ�
KDYH�VKRZQ�WR�EH�TXLWH�VHQVLWLYH�WR�UDQGRP�SHUWXUEDWLRQV�LQ�WKH�GHVLJQ�YDULDEOHV��2Q�WKH�RWKHU�KDQG��
UREXVW�VROXWLRQV�H[WUDFWHG�IURP�WKH�VHW�RI�VROXWLRQV�RQ�WKH�3DUHWR�IURQW�GHPRQVWUDWHG�LPSURYHPHQWV�
LQ�WHUPV�RI�WKH�UREXVWQHVV�ZLWK�UHVSHFW�WR�WKRVH�SHUWXUEDWLRQV��7KH�QXPHULFDO�VWUDWHJ\�FRQFHLYHG�
KDYH�VKRZQ�WR�EH�TXLWH�DGHTXDWH�LQ�WHUPV�RI�FRPSXWDWLRQDO�EXUGHQ����
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ABSTRACT

This work concerns the control of sound transmission through double laminated panels us-
ing passive piezoelectric shunt technique. More specifically, the system consists of two sand-
wich panels (each one composed of two elastic faces and a viscoelastic core) with an air gap
in between. Furthermore, piezoelectric patches (connected to a resonant shunt circuit) are
surface-mounted on the external faces of the structure in order to damp some specific res-
onance frequencies of the coupled system. Firstly, a finite element formulation of the fully
coupled visco-electro-mechanical-acoustic system is presented. This formulation takes into ac-
count the frequency dependence of the viscoelastic material, the electro-mechanical coupling
of the piezoelectric elements and the elastoacoustic interaction. A modal reduction approach is
then proposed to solve the problem at a lower cost. To this end, the coupled system is solved by
projecting the mechanical displacement and the pressure unknown on a truncated basis com-
posed respectively of the first real short-circuit structural modes and the first acoustic modes
with rigid boundaries conditions. A static correction is also introduced in order to take into
account the effect of higher modes. Moreover, due to the fact that only two electrical variables
per piezoelectric patch are used (the electric charge contained in the electrodes and the voltage
between the electrodes), they are kept in the reduced system. Finally, numerical examples are
analyzed to show the efficiency of the proposed reduced order model.
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1 INTRODUCTION

Double-wall structures are widely used in noise control due to their superiority over single-
leaf structures in providing better acoustic insulation. Typical examples include double glazed
windows, fuselage of airplanes, panels of vehicles, etc.. By introducing a thin viscoelastic
interlayer within the panels, a better acoustic insulation is obtained. In fact, sandwich structures
with viscoelastic layer are commonly used in many applications for vibration damping and noise
control. In such structures, the main energy loss mechanism is due to the transverse shear of the
viscoelastic core. However, at low frequency, in particular around the mass-air-mass resonance
of the double wall, the acoustic performance of this type of system is greatly deteriorated and
the viscoelastic layer is not effective for treating the fall of the sound transmission loss. The
aim of this work is to reduce the sound transmission at these resonance frequencies by a passive
piezoelectric shunt technique through a full finite element modeling of the problem. In this
technology, the elastic structure is equipped with piezoelectric patches that are connected to a
passive electrical circuit, called a shunt. The piezoelectric patches transform mechanical energy
of the vibrating structure into electrical energy, which is then dissipated by Joule heat in the
shunt circuits.

The present work concerns the numerical modeling of noise and vibration reduction
of double laminated walls with viscoelastic interlayers by using shunted piezoelectric elements.
The objective is to propose efficient reduced order finite element model able to predict the shunt
damping around the mass-air-mass resonance of the system.

2 FINITE ELEMENT FORMULATION

Consider the double-wall structure shown in Fig. 1. A prescribed force density f is applied to
the external boundary �

t

of the structural domain ⌦
S

. The acoustic enclosure is filled with a
compressible and inviscid fluid occupying the domain ⌦

F

. The cavity walls are rigid except
those in contact with the flexible wall structures noted ⌃.
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Figure 1. Double sandwich wall structure.

In order to achieve maximum vibration dissipation and acoustic radiation attenuation
of selected modes, the passive piezoelectric shunt damping technique is used. Thus, a set of P
piezoelectric patches are bounded on the structure surface and connected to resistive or resonant
shunt circuits. In this technology, the piezoelectric patches converts a fraction of mechanical
energy associated with the structure vibration into electrical energy, which is dissipated by heat
through the resistor in the shunt circuits. Each piezoelectric patch has the shape of a plate with
its upper and lower surfaces covered with very thin layer electrodes. Moreover, we denotes by
R(p) and L(p) the resistance and the inductance of the resonant shunt circuit connected to the
pth patch.
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The general FE formulation of the electromechanical problem when the piezoelectric
patches are RL shunted is [1]
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where U is the column vector of nodal values of mechanical displacement; M
u

and K
u

are the
mass and stiffness matrices of the structure (elastic structure and piezoelectric patches); F is the
applied mechanical force vector, P is the column vector of nodal values of acoustic pressure;
M

p

and K
p

are the mass and stiffness matrices of the fluid; C
up

is the fluid-structure coupled
matrix. Moreover, Q and V are the column vectors of electric charges and potential differences;
C

uV

is the electric mechanical coupled stiffness matrix; K
V

is a diagonal matrix filled with the
P capacitances of the piezoelectric patches; where R and L are the diagonal matrices filled with
the electrical resistances and the electrical inductances of the shunt circuits.

3 VISCOELASTIC CORE

In order to provide better acoustic insulation, damped sandwich panels with a thin layer of
viscoelastic core are used in this study (Fig. 1). In fact, when subjected to mechanical vibrations,
the viscoelastic layer absorbs part of the vibratory energy in the form of heat. Another part of
this energy is dissipated in the constrained core due to the shear motion.

In this work, a linear, homogeneous and isotropic viscoelastic core is used. This material
is defined by a complex and frequency dependent shear modulus in the form [2]

G⇤(!) = G
0
(!) + iG

00
(!) (2)

where G
0
(!) is know as shear storage modulus, as it is related to storing energy in the volume

and G
00
(!) is the shear loss modulus, which represents the energy dissipation effects.

4 REDUCED ORDER MODEL

The finite element model of Eq. (1) is applicable only to a model which does not imply a
prohibitive number of degrees of freedom. To overcome these limitations, we developped a
reduced-order formulation for computing the frequency response functions of the fully coupled
visco-electro-mechanical-acoustic system. The proposed approach is based on a normal mode
expansion and truncation of high-frequency modes. The chosen reduction concerns only the
mechanical and acoustical variables U and P. The electrical unknown field Q is not concerned
by the reduction because the dimension of this vector corresponds to the number of piezo-
patches and therefore is very small compared to the mechanical (i.e., displacement in the host
structure and the piezo-patches) and acoustical finite element degrees-of-freedom. The mechan-
ical displacement unknown is projected on a truncated basis composed by the first structural in
vacuo modes with short-circuited patches while the acoustic pressure unknown is projected on
a truncated basis composed by the first acoustic normal mode computed from the Helmholtz
equation with rigid boundary conditions.

3
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5 EXEMPLE

This example concerns the control of sound transmission through a double laminated glazing
panels using shunted piezoelectric patches (Fig. 2-a). The system consists of two identical
clamped laminated panels of glass separated by an air cavity. Each laminated glass is composed
of two glass plates bonded together by a viscoelastic interlayer. Fig. 2-b presents the normal
sound transmission loss of the laminated double wall with and without piezoelectric shunt. The
response is calculated with a modal reduction approach using the first 20 in vacuo structural
modes and the first 20 acoustic modes of the fluid in rigid cavity with static correction. It can
be seen that the resonant magnitude of the second mode (the mass-air-mass resonance) has
been significantly reduced. In fact, the strain energy contained in the piezoelectric material is
converted into electrical energy and hence dissipated into heat using the RL shunt device.
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Figure 2: (a) Double laminated glazing panels, (b) Normal sound transmission loss of lami-
nated double panels: control of panel-air-panel resonance by shunted piezoelectric patches.

6 CONCLUSIONS

In this paper, a finite element formulation for sound transmission reduction through double
wall sandwich panels with viscoelastic core and piezoelectric shunted patches is presented. A
reduced-order model, based on a normal mode expansion, is then developed. The proposed
methodology is applied to the control of the mass-air-mass resonance frequency of a double-
glazing structure.
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ABSTRACT

In this work the use of elastic multibody systems for noise, vibration, and harshness investiga-
tions in electric power steering systems is discussed. The gears in these systems can get highly
stimulated in different driving situations and may produce undesired vibrations. Rigid multi-
body systems may represent the system dynamics very well, but elastic deformations in flexible
systems are neglected with this method. Elastic multibody systems represent a good compro-
mise between computation time and accuracy in the elastic deformations. This work presents
an implementation of the software package Gear Train Module in the simulation environment
at Bosch Automotive Steering. With this implementation it is possible to use elastic multibody
systems for dynamic calculations of rack-pinion gears in automotive steering systems.
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1 INTRODUCTION

Recently the automotive industry has seen a strong gain in the use of electric components. Also,
in the field of steering systems hydraulic concepts have effectively been replaced by more effi-
cient electric power steering (EPS) concepts. Instead of hydraulic pressure, the driver’s steering
input is supported by an auxiliary steering torque, generated by an electric servo drive. A sum-
mary of different EPS concepts can be found in [1]. The mostly used design in upper class cars
is the EPS axle parallel (EPSapa) concept, where a belt driven ballnut gear transforms its rotary
motion into a translative motion of the rack, see Figure 1. A great advantage of these systems
is the low energy consumption. Additionally, they allow extra features like supporting lane
departure warning systems, automatic parking assistance and even highly automated driving.

Figure 1: Acting forces on an electric power steering (EPSapa) [1].

However, one important challenge in developing EPS systems is the handling of arising
vibrations from additional drive and gear components. Especially in gearing parts, different
undesired phenomena may occur like toothing rattle or clunk. They may appear to the driver
as audible noise or even as haptically sensible vibrations on the steering wheel and must be
prevented to ensure a high driving comfort. Since these phenomena have a highly dynamic
character, their identification requires efficient transient simulation approaches, like multibody
systems (MBS). However, phenomena related to structural elasticity are often not represented
correctly in rigid MBS. Also, finite element (FE) analyses are not appropriate for these tasks
because despite offering very accurate results, they have the drawback of very big computation
times. In such cases, elastic multibody systems (EMBS) offer a good compromise between fast
computation and sufficient accuracy related to the elastic deformation. In [2] the use of EMBS
on flexible gear wheels was shown.

This work discusses the use of the EMBS method to calculate accurate contact forces in
the rack-pinion gear of an electric power steering. The software package Gear Train Module
(GTM) [3] was used and extended to set up and simulate rack-pinion models.

2 ELASTIC MULTIBODY SYSTEMS WITH CONTACT

The concept of EMBS in the floating frame of reference formulation is described in detail in
[4]. The equation of motion for a free body is
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where M i is the symmetric mass matrix, containing mass, inertia and, coupling terms. The
vector of generalized accelerations zi

II

holds the translational and rotational accelerations v̇i

and !̇i of the rigid body motion and the elastic acceleration q̈i with dim(qi) = n
i

. They
are obtained via model order reduction from the original FE system with dim(q̄i) = N

i

by
qi ⇡ V · q̄i, containing the projection matrix V 2 IRN

i

⇥n

i . The force terms on the right hand
side consist of inner forces hi

e

, volume forces hi

!

, surface forces hi

p

, and discrete applied forces
hi

d

.
There exist different approaches for the consideration of mechanical contact in MBS,

see [5]. One detailed approach is the general 3-D node to surface contact search, where the
FE meshes of the bodies are used for mutual intersection checks. In case of intersection, a
penalty force is calculated based on the penetration depth. Benefits of this contact model are,
that malpositioning of gears can be handled natively and elastic deformations of the bodies
are respected by transforming the contact elements into the deformed configuration. However,
because of the high computational effort of a node to surface contact search it is mandatory to
execute a coarse collision detection upfront. In the special case of gear contact, based on the
current tooth positions additionally a preselection of the contact sets can be done to limit the
computational effort even further.

3 MODELING AND SIMULATION OF A RACK-PINION GEAR

The following shows the setup and results of an impact test, that was simulated in GTM with
a rack-pinion model from [6]. The FE mesh of the model, with the components rack (red)
and pinion (white), is illustrated in Figure 2. To classify the EMBS results, comparisons to
corresponding rigid MBS and FE simulations are made.

Figure 2: Rack-pinion gear test model [6].

For this test, the rack is fixed in all spatial directions, the pinion has a rotary degree of
freedom around its main rotation axis with a starting angular velocity of 100 rad/s. The penalty
contact stiffness is set to 3.5E7 N/m. In [2] it was shown that modes up to 80 kHz are needed to
provide an adequate result in the contact force. Both bodies were reduced by modal truncation
to 200 elastic degrees of freedom.

The resulting cumulative contact forces and angular velocities of all investigated meth-
ods are shown in Figure 3. It can be seen, that the FE and EMBS results match very well. They
contain significant oscillations due to elastic deformations during contact, while they are miss-
ing in the rigid model. The resulting simulation time for the EMBS method on an Intel Core i7
computer is shown in Table 1. It provides results 2.5 times slower than the rigid MBS, but is
about 15 times faster then the FE simulation.
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Figure 3: Cumulative contact forces and angular velocities in the different configurations.

Table 1: Comparison of simulation time (in seconds).

EMBS Rigid MBS FE analysis
calculation time 210 80 3180

4 CONCLUSION

This work showed the benefit of using EMBS in gearing calculations within steering systems.
With EMBS the elasticity of the gears can be considered in rack-pinion gearing calculations,
enabling the identification of structural vibrations. Anyway, the computational effort is much
smaller compared to a finite element analysis.
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ABSTRACT

This work aims at simulating the time response of a structure damped by viscoelastic materials.
The structure is discretised by finite elements and a 4-parameter fractional derivative model is
used to describe the frequency-dependency of the mechanical properties of the viscoelastic ma-
terial. The proposed approach combines a classical Newmark time-integration scheme to solve
the semi-discretised equation of motion with a diffusive representation of fractional derivatives.
This approach is applied to a finite element model, and validated on a single degree-of-freedom
system for which an analytical solution can be derived.
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1 INTRODUCTION

The importance of fractional calculus for modeling viscoelastic material behavior has been
recognized by the mechanical scientific community since the pioneering work of Bagley and
Torvik [1]. The merits of using fractional differential operator lie in the fact that few parameters
are needed to accurately describe the constitutive law of damping materials and the resulting
model can be easily fitted to experimental data over a broad range of frequencies. While the use
of such models is quite straightforward in the frequency domain, some difficulties arise from
their application in the time-domain, due to the presence of fractional derivatives.
The resolution methods are classically either based on time discretization of the fractional dy-
namics (see e.g. [2]), or on diffusive representations (cf. [3]). For large scale systems, the
first method proves memory consuming because it is necessary to store the whole displacement
history of the system due to the non-local character of the fractional derivatives. The second
method, based on diffusive realizations of fractional derivatives, is numerically more efficient
because it has no hereditary behavior, thus avoiding the storage of the solution from all past
time steps. The diffusive representation, coupled with a Newmark integration scheme, has al-
ready been developed and validated for a fractionally damped single-of-freedom system [4]. In
[5], an extension of this approach to viscoelastic structures using FE modeling and a fractional
derivative model has been presented but not tested. The purpose of this work is to implement
the method described in [5] and to apply it to a structure with viscoelastic damping. The ap-
proach is validated on a single degree-of-freedom system for which an analytical solution can
be derived.

2 FINITE ELEMENT VISCOELASTIC PROBLEM

We consider a structure composed of elastic and viscoelastic materials. A fractional derivative
model is identified to described the frequency-dependency of the complex shear and the bulk
moduli (resp. Ĝ and K̂) of the viscoelastic material:

Ĝ(!) = G0 +
(G1 � G0)(i!⌧

G

)↵

G

1 + (i!⌧
G

)↵

G

and K̂(!) = K0 +
(K1 � K0)(i!⌧

K

)↵

K

1 + (i!⌧
K

)↵

K

(1)

where G0 and K0 are relaxed moduli, G1 and K1 are unrelaxed moduli satisfying G1 >
G0 and K1 > K0, ⌧

G

> 0 and ⌧
K

> 0 are relaxation times and ↵
G

and ↵
K

are fractional
coefficients comprised bewteen 0 and 1. Figure 1 shows that the fractional derivative model
enables a good representation of the frequency-dependency both the shear and the bulk moduli
over a wide frequency range with few parameters.
The finite element discretization of the equation of motion leads to the following matrix system:

h
K

e

+ i!ĥ
G

(!)KG

v

+ i!ĥ
K

(!)KK

v

� !2M
i
Û = F̂ (2)

where K
e

= K
ep

+ G0

�
KG

v

�
0

+ K0

�
KK

v

�
0
, KG

v

= (G1 � G0)
�
KG

v

�
0
, and KK

v

= (K1 �
K0)

�
KK

v

�
0
. The matrix K

ep

is the stiffness matrix associated to the volume of elastic part of
the model,M is the mass matrix of the whole system, and the stiffness matrix associated to the
volume of viscoelastic material (computed with unitary moduli), is separated into a spheric part�
KK

v

�
0

and a deviatoric part
�
KG

v

�
0
. According to Equation (1), the functions ĥ

G

(!) and ĥ
K

(!)
are expressed as:

ĥ
G

(!) =
⌧↵

G

G

(i!)1�↵

G [1 + (i!⌧
G

)↵

G ]
and ĥ

K

(!) =
⌧↵

K

K

(i!)1�↵

K [1 + (i!⌧
K

)↵

K ]
(3)
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Figure 1: Master curves of the complex shear and bulk moduli of Deltane 350 (Paulstra R�)
measured (points) by DMA and fitted (lines) by a fractional derivative model (left). Real part
of the complex Poisson ratio from identified models (right).

3 COUPLED NEWMARK-DIFFUSIVE SCHEME

Equation (2) can be rewritten in the time domain as follows:

MÜ +
�
h

G

(t) ?KG

v

+ h
K

(t) ?KK

v

�
U̇ +K

e

U = F(t) (4)

where the symbol ? represents a convolution product.
Following e.g. [3, 5], letting V = U̇, the functions h

G

(t) and h
K

(t) will be realized by a
standard diffusive representation of the form:

@'(⇠, t)

@t
= �⇠'(⇠, t) + V(t), with '(⇠, 0) = 0 (5)

observed through the continuous superposition:

(h
j

? V)(t) =

Z 1

0

µj(⇠)'(⇠, t)d⇠ with j = G, K (6)

This exact diffusive representation can be approximated as follows:

Z 1

0

µj(⇠)'(⇠, t)d⇠ ⇡
NX

n=1

µj

n

'(⇠
n

, t) with j = G, K (7)

where N is the number of approximation nodes, ⇠
n

a sequence of angular frequencies in the
frequency range of interest and µG

n

and µK

n

are the corresponding optimal weights computed by
minimising the respective functions C

G

(µG) and C
K

(µK) defined as [4]:

C
j

(µj) =
LX

l=1

�����

NX

n=1

µj

n

i!
l

+ ⇠
n

� 1

(i!
l

)1�↵

j

�����

2

with j = G, K (8)

3

132



MEDYNA 2017 25-27 Apr 2017, Sevilla (Spain)

where !
l

are angular frequencies and L >> N .
This diffusive representation is integrated into a Newmark integration scheme, by considering
the functions '

n

(⇠
n

) := '(⇠
n

, t) as internal variables updated at each time steps. More details
on the time integration scheme have been presented in [5].

4 ANALYTICAL SOLUTION FOR A SINGLE-DEGREE-OF-FREEDOM SYSTEM

The equation of motion for a single-degree-of-freedom system is:
✓

k
e

+
(i!⌧)↵

1 + (i!⌧)↵

k
v

� !2m

◆
û = f̂ , (9)

and can be rewritten in the time domain as:
⇥
m⌧↵(D

t

)2+↵ + m(D
t

)2 + (k
e

+ k
v

)⌧
↵

(D
t

)↵ + k
e

⇤
u(t) = [1 + ⌧↵(D

t

)↵] f(t) (10)

where (D
t

)� represents the time derivative of order � (integer or fractional), and ↵ = p/q, with
p and q integers satisfying p/q 2 [0, 1].
To analytically solve this equation, the exact solution is expressed in terms of fractional power
series:

u(t) =
1X

n=0

u
n

t
n

q (11)

where the coefficients u
n

are calculated from initial conditions and recurrence relationships.

5 CONCLUSION

The coupled Newmark-diffusive scheme described in this paper will be used to compute the
time response of a viscoelastically damped structure, modelled by 3D finite elements. Valida-
tion of the proposed approach will be carried out on the single-degree-of-freedom system, by
comparing the analytical solution with that obtained by the proposed approach.
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[4] J.-F. Deü and D. Matignon. Simulation of fractionally damped mechanical systems by
means of a Newmark-diffusive scheme. Computers and Mathematics with Applications,
59:1745–1753, 2010.
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ABSTRACT

This work presents a two-and-a-half (2.5D) spectral formulation based on the boundary ele-
ment method (BEM) to study three dimensional (3D) wave propagation within acoustic regions.
The BEM is used to analyse the acoustic field in unbounded regions with rigid cavities with
arbitrary cross-section. The BEM is extended to its spectral formulation using Lagrange inter-
polant polynomials as element shape functions at the Legendre-Gauss-Lobatto (LGL) points.
The proposed method is verified from a benchmark problem regarding the acoustic scattered
wave in an unbounded medium by a rigid cavity. A h-p analysis is carried out to assess the
accuracy of the method. The results show a high accuracy of the proposed method to represent
this kind of problem.
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1 INTRODUCTION

Time-harmonic wave propagation, such as fluid acoustics and solid scattering, is a common phe-
nomenon that appears in many engineering fields. The propagation of acoustic waves triggered
by static and moving pressure sources, the vibration assessment and the acoustic insulation in-
volve fluid and solid interaction and must be considered rigorously. The finite element method
(FEM) have been used is several works to predict the response in fluid-structure interaction
problems. For the low frequency range, the conventional finite elements with linear shape rep-
resent accurately the fluid and solid scattering waves. However, at high frequencies, these shape
functions do not provide reliable results due to so-called pollution effects [1, 2]: the accuracy
of the numerical solution deteriorates with increasing non-dimensional wave number and it is
not sufficient the commonly employed rules of n elements per wavelength [3]. High element
resolutions are required in order to obtain results with reasonable accuracy.

The method proposed in this work regards with a two-and-a-half dimensional (2.5D)
approach to represent scattered waves in fluid media. The proposed approach is useful for
problems where the material and geometric properties are uniform along one direction, and the
source exhibits 3D behaviour.

2 NUMERICAL MODEL

The 2.5D formulation computes the problem solution as the superposition of two-dimensional
(2D) problems with a different longitudinal wavenumber, k

z

, in the z direction. An inverse
Fourier transform is used to compute the 3D solution:

a(x, !) =

Z +1

�1
ba(bx, k

z

, !)e�ik

z

zdk
z

(1)

where a(x, !) is an unknown variable (e.g., displacement or pressure), ba(bx, k
z

, !) is its repre-
sentation in the frequency-wavenumber domain, bx = x(x, y, 0), ! is the angular frequency, and
i =

p
�1.

2.1 The 2.5D spectral boundary element formulation

The boundary element formulation presented in this work considers an arbitrary boundary sub-
merged in an unbounded fluid medium. The integral representation of the pressure pi for a point
i located at the fluid subdomain ⌦

f1, with zero body forces and zero initial conditions may be
written as [4]:

cipi(xi, !) =

Z

�
f

pi⇤(x, !; xi)ui(x, !)d� �
Z

�
f

ui⇤(x, !; xi)pi(x, !)d� (2)

where ui(x, !) and pi(x, !) are respectively the normal displacement to boundary �
f

and the
nodal pressure. ui⇤(x, !; xi) and pi⇤(x, !, xi) are respectively the fluid full-space fundamental
solution for normal displacement and pressure at point x due to a point load at xi. The integral-
free term ci depends only on the boundary geometry at point i. The integration boundary �

f

represents the boundary between the unbounded fluid medium (⌦
f1) and the solid subdomain

(⌦
s

). The proposed spectral boundary element method for the 2.5D fluid element uses Legendre
polynomials of order p as interpolation shape functions, where the local nodal coordinates ⇠ are
found at the LGL integration points.
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3 NUMERICAL VERIFICATION

The BEM model was verified with a benchmark problem. The model was implemented and
validated by applying it to a fixed cylindrical circular cavity, submerged in a homogeneous
unboundend fluid medium. The cavity is subjected to a harmonic point pressure load. The
analytical solution to this problem can be found in Reference [5].

The cavity had a radius r = 5 m , located at the origin (x, y) = (0, 0). The un-
bounded fluid medium properties were pressure wave velocity ↵ = 1500 m/s and density
⇢ = 1000 kg/m3. The problem solution was computed for a dilatational point source placed at
the fluid medium bx0 = (x0, y0) = (0, 15) 15 m away from the cavity centre. This loads emits a
harmonic incident field bp

inc

at a point bx described by:

bp
inc

= (bx, !, k
z

) =
�iA

2
H(2)

0 (k
↵

p
(x � x0)2 + (y � y0)2) (3)

where A is the source amplitude, H(2)
0 is the Hankel function of the second kind, and k

↵

=p
↵/!. In this problem, the longitudinal wavenumber was set to k

z

= 0.
The problem solution was computed over a grid of 1376 receivers regularly spaced in

a outer region defined by �10m  x  10m and �10m  y  10m. Figure 1 shows the
convergence curves for the scaled L2 error ✏2. The curves show a monotonic convergence with
the element order p. Finest meshes tend to a minimum error with a lower element order p.

Element order p
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1/h=4/π

Figure 1: Convergence of scaled L2 error ✏2 for different discretisations 1/h and element
polynomial orders p.

4 CONCLUSIONS

This work has proposed a spectral based formulation based on the BEM to study acoustic wave
propagation. This method looks at 3D problems whose materials and geometric properties
remain homogeneous in one direction. A spectral 2.5D approach for fluid-acoustics media was
developed to avoid the pollution effect at high frequencies in the problem solution. The model
was verified with a benchmark problem with known analytical solution. The numerical result
was in good agreement with the reference solution.
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ABSTRACT

The Variational Theory of Complex Rays (VTCR) is a numerical technique that has been

developed for the prediction of vibration problems in the medium frequency regime. It is a Trefftz

Discontinuous Galerkin method which uses plane wave functions as shape functions. As such, one

of its characteristics is the necessity for the shape functions to satisfy exactly the governing

equation. For heterogeneous media, this is clearly a difficulty, as no such exact solution is known.

In this paper, the VTCR is extended to bypass this difficulty, by creating a new base of shape

functions.

[1] INTRODUCTION

Today, one way to efficiently solve the medium frequency problems is to adopt a Trefftz approach.

By doing this, the user makes an analysis based on shape functions which satisfy exactly the

governing equation, then containing a strong knowledge of the physical problem. These methods

are, for example, the partition of unity method [1], the ultra weak variational method [2], the least

square method [3], the plane wave discontinuous Galerkin method [4], the method of fundamental

solutions [5] the discontinuous enrichment method [6], the wave based method [7]. The

Variational Theory of Complex Rays (VTCR), which is the approach used in this paper, also

belongs to this category of strategies. It has been introduced in [8]. All these techniques have

shown a good efficiency for the resolution of vibration problems. However, they are mainly all

limited to homogeneous media, i.e. to constant wave numbers.
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In this paper, we propose a development of the VTCR which allows us to solve vibration

problems with varying wave numbers. It is based on the definition of a new type of shape

functions, composed of Airy functions, which satisfy a priori the dominant part of the governing

equation.

[2] REFERENCE PROBLEM TO SOLVE

Let us consider a 2-D Helmholtz problem defined on Ω  with the boundary ∂Ω=∂1Ω∪∂2Ω
where Dirichlet and Neumann can be prescribed. The reference problem to solve is: find

u∈H
1(Ω)  such that

(1−i η)Δ u+k
2
u=0  over Ω

u=ud  over ∂1Ω
(1−i η)∂nu=gd  over ∂2Ω

where η  is the (positive) damping coefficient, k  the wave number and ∂n  is the normal

derivative. ud  and gd  are prescribed boundary conditions.

[3] VTCR FORMULATION OF THE REFERENCE PROBLEM

Let us suppose that Ω  is partitioned in E  subdomains: Ω=∪e=1

E Ωe . We denote by Γe , e '  the

common boundary between Ωe  and Ωe' , and by Γe ,e  the common boundary between Ωe  and

∂Ω . The VTCR strategy consists in finding the solution

 u∈U ={u /ue∈U e={ue /(1−i η)uE+k
2
uE=0  over Ωe }}

such that

Re(−ik (∑e
∫Γe , e' ( 1

2
{ qu . n}ee ' { v }ee'−

1

2
[qv .n]ee' [u]ee ')dS

−∑
e
∫Γee∩∂1 Ω

qv .n (u−ud)dS+∑
e
∫Γee∩∂2Ω

(qu .n−g d)v dS ))
=0    ∀v∈U

where { u}ee '=(ue+ue ')Γee '
, [u]ee '=(ue−ue ')Γee '

, qv=(1−i η)grad u . The over bar represents

the complex conjugated part of a number, and Re the real part. The existence and uniqueness of

solution in this kind of variational formulation have been proved in [9]. An approximated solution

can be found by satisfying this variational formulation in a subspace of U  of finite dimension.

[4] DEFINITION OF SHAPE FUNCTIONS

As mentioned in the introduction, we consider here the case where the wave number varies. We

suppose, then, that we can write k
2=α x+β y+γ , α , β  and γ  being constant parameters in

Ωe . The shape function needs to satisfy (1−i η)u+k
2
u=0 . It can be shown that, in such a case,

the shape function are described by Airy functions. Different description can be used when

selecting Airy functions. We have decided to use this description: the shape functions are

d e s c r i b e d b y Ψ( x , y)=F ( x̃)G ( ỹ) , w h e r e F ( x̃)=Bi (− x̃)+i Ai (− ỹ)  a n d

G ( ỹ)=Bi (− ỹ)+i Ai (− x̃) , where Ai  and Bi  are the Airy functions. The new space variables

are defined by x̃=
k m

2
cos

2θ+α( x−xm)

α2 /3(1−i η)1/3  and ỹ=
k m

2
sin

2θ+α( y−ym)

β2 /3(1−i η)1/3 . k m

2
 represents the

2
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minimum value of k
2

 on Ωe  and ( xm , ym)  is the coordinate which enables k
2

 to take its

minimum value k m

2
. θ  represents the polar direction in the 2-D coordinates. Thanks to this way

of doing, the selected shape functions satisfy the properties F ( x̃)→cos(k1 x)+i sin (k1 x)  when

α→0 , and G ( ỹ)→cos(k 2 y)+i sin (k 2 xy)  when β→0 . Then, the shape functions tend toward

propagative plane waves when the medium becomes homogeneous.

In order to have an approximated solution, one just needs to satisfy the variational formulation in

a subspace U N  of U , of dimension N . The classical way to define such a subspace is to select

only N  direction θi , θi∈{0 ;2∗π/ N ; ... ;(N −1)π / N } , in the 2-D polar representation. By

doing this, one naturally gets a matrix system to solve, where the matrix corresponds to the

projection of the bilinear part of the variational formulation on U N×U N , the second member  its

projection on U N  and the unknown vector the amplitudes of the N  shape functions Ψ i  which

approximate the exact solution.

[5] NUMERICAL ILLUSTRATION

We consider a simple geometry of square [0 m;1 m]×[0 m;1 m] for the domain Ω . In this

domain, η=0.01 , α  = 150 m−3, β  = 150 m-3 and γ  = 1000 m. The selected boundary

conditions are Dirichlet conditions such that the exact solution is uex=∑
i=1

3

Ψi( x , y)  with

θ1=10° , θ2=55°  and θ3=70 ° . The relative error between the exact and the approximated

solution is computed through √∫Ω
∣u−uex∣

2
d Ω/∫Ω

∣uex∣
2
d Ω . Three space decompositions are

considered: either Ω  is considered as one subdomain, or is cut in four parts, or in nine parts (see

figure 1).

Figure 1. The considered decompositions for the selected example in Section 5.

As shown in figure 1 and explained in the last section, the approximated solutions are searched by

using N  shape functions regularly distributed in the 2-D polar coordinates, in each sub-domain

of Ω . The convergence curve is represented in Figure 2.

As one can see, the strategy converges very fast toward the exact solution. Then, with the VTCR,

few degrees of freedom are needed to get a good proximation of the solution of the reference

problem. Moreover, one can see that the VTCR better works with large subdomains with many

shape functions inside, than small subdomains with few shape functions inside. This behaviour

has already been observed on the classic VTCR.
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Figure 2. Convergence curves for the example considered in Section 5.

[6] CONCLUSION

In this works, we present how to use the VTCR for the resolution of heterogeneous media. The

definition of a new type of shape function is done. This can be used on media where the wave

number linearly varies thanks to the space. A numerical example shows that this works perfectly,

and that it behaves like the classic VTCR. More complex media are the focus of our research.
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ABSTRACT 
 

Under some conditions, Solid Rocket Motors (SRM) may exhibit internal Pressure Oscillations 
(PO) as a result of a coupling between aerothermal or combustion phenomena with the cavity 
longitudinal acoustic modes, and highly depend on the internal shape of the motor and the 
propellant formulation. The mechanical effects of pressure oscillations lead to SRM sinusoidal 
vibrations - Thrust Oscillations (TO) and acceleration - which could damage both the payload 
and the launcher (need of additional mechanical filtering devices in such case). Evaluation of 
TO/PO amplification factor is therefore mandatory in the early studies of a new SRM design. 
Tools using 3D FE-models have been developed but based on CAD-meshing and aren’t 
appropriate for preliminary design project and sensitivity iterations. In this context andwith the 
cooperation of the Centre National d’EtudesSpatiales (CNES), a fast 1D purely geometrical 
approach has been developed, tested and confronted to the reference tools in order to evaluate 
the frequencies and shapes of the acoustic modes and the static TO/PO amplification factors. This 
paper describes the theoretical principles, the SRM modelling hypothesis and validation cases of 
the developed tool. 
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ABSTRACT 

 
The bolted joints have a strong impact on the damping and the stiffness of the structures. This 
impact remains difficult to predict because of the difference between the length scale of the real 
contact area and the wavelength of the vibration modes, and the uncertainties on the real geometry 
of the contact area. The method proposed in this paper is to divide the jointed structure into two 
parts : the linear part (L) and the non-linear one (NL) located around the joint. First, a linear 
analysis is performed on the global structure, neglecting dissipation inside the joint, to determine 
the normal modes of the structure. The normal modes subspace is normalized to the sti_ness 
matrix to associate to each eigenvectors the same strain energy. In the neighborhood of the bolted 
joint, eigenmodes are not orthogonal to each other’s. Thus, it is possible to reduce the size of the 
subspace spanned by the local eigenmodes. Moreover, most of them do not dissipate energy. 
Thus, it is possible to select the only ones that inuence the joint behaviour. We introduce the 
Principal Joint Strain Basis (PJSB) which is the optimal Ritz basis deduced from the structure 
eigenmodes, and simplified thanks to the analysis of the dissipation potential of each eigenmode. 
The dissipation potential is estimated by the energy coupling in the joint computed from the 
sensitivity of the eigenfrequency to the tightening configuration, i.e. when the surfaces of the 
interface are tied or when the tightening is very low. Then, we assume that a metamodel is able to 
represent the behaviour of the joints. In order to build it, we apply the PJSB as a loading on a 
finite element model of the joint and we post-process the results in order to use them in a reduce 
order model.  
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1 INTRODUCTION 

The bolted joints strongly influence both the damping and the stiffness of the structures. 
Unfortunately, they remain difficult to predict, mainly because the physics involved occur with 
very different scales, i.e. the length scale of the real contact areas and the wavelength of the 
vibration modes. This make the classical finite element method difficult to use because in the 
contact areas, the mesh have to be fine whereas it can be coarse elsewhere. To overcome these 
difficulties, the purpose of this paper is to use a spatial decomposition of the domain in two 
subdomains that allows working with different spatial dicretizations on both subdomains. The 
subdomains are ΩS that includes all the structure parts and ΩJ that includes the joints.  The first 
idea, detailed in section 2, is to solve alternatively the problems written on ΩS  and ΩJ  until the 
results   on both become similar. This is strongly inspired of the LATIN method [6] but adapted 
to study periodic vibrations using Harmonic Balance Method (HBM) coupled with the 
Alternating Frequency Time (AFT) algorithm [2] or more recently [3]. The second idea of this 
work is to reduce the order of the model by using Ritz basis and meta-models spanning the 
subspace that contains the solutions. 

 
Figure 1. Typical schema for the study of jointed structures vibrations. Subdomain 

decomposition of the whole problem 

2 DECOMPOSITION OF THE  PROBLEM 

This work focuses on dynamics of structural assemblies that involve parts that behave linearly 
and bolted joints that behave nonlinearly. Overall, the vibrations of the structure can be studied 
by solving the following problem: 

MÜ + KU + F(U, U̇ ) = FE (1) 

Where U is the displacement field, FE is the excitation force and F is the non linear force induced 
by friction in the joints. M, K are the mass and the stiffness matrices. Equation 1 can be detailed 
by separating the Degrees of Freedom that belong to each subdomain ΩS  and ΩJ  and to the 
interface ΓI. 

 (2) 
In this work, we focus on harmonic excitation. For such kind of problem, the HBM is often used 
as it allows to compute steady-state periodic vibrations efficiently. Assuming steady-state 
vibrations and a periodic response, U can be written as: 

.  (3) 
in a basis of exponential functions. Assuming the periodicity of the non-linear force, we can also 
expand it on a Fourier Basis 

.  (4) 
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Balancing, according to their harmonic order, each term of the obtained equation, we get: 

.  (5) 

This can be summarized in a more compact form: 

[Λ] Û + F̂ = F̂ E (6) 

Where Λ is the matrix of the complex impedances, Û  is the vector of unknowns that merges 
each harmonic order, F̂  is the expansion of the nonlinear force on each harmonic order, ˆ

EF is 
the expansion of the excitation force. The Harmonic Balance Method is easy to use when F is 
mathematically regular. The problem is nonlinear but algebraic and it can be solve by a Newton-
Raphson algorithm. When it is singular, the Alternating Frequency-Time (AFT) method can 
allow to solve the problem. The main idea of AFT is to evaluate the nonlinear force in the time-
domain and to make the harmonic balance in the frequency domain. This allows to solve 
problems with contact and friction for which the nonlinear force is non regular. Nevertheless, 
unfortunately, AFT becomes too expensive to solve large scale problems due to the computation 
of the jacobean matrix J(k+1) and the computation of the non-linear force F(k+1). To overcome, this 
problem, the domain can be decomposed in two subdomains ΩS and ΩJ, see Figure 1. This leads 
to two systems of equations that share an interaction force R and the displacement filed UI  on ΓI. 
R and UI  allow to couple both systems. 

.   (7) 
To solve this problem, we use a fixed point algorithm, that alternatively solve a linear problem in 
the frequency domain on ΩS in order to get the kinematic field US,UI when R and FE  are applied 
and a nonlinear quasi static problem in the  time domain on ΩJ in order to get the kinematic field 
UJ and the reaction force R when UI is applied.  In order to make the problem easier to solve, one 
assume that the inertia terms are applied as a known field that comes from the previous increment, 
see [5] for more explanations. 

3 MODEL REDUCTION 

As seen before, the spatial decomposition of the problem associated with a fixed point algorithm 
and the Harmonic Bal- ance method allow to define a framework to compute the vibration levels 
of jointed structures under harmonic loadings. Nevertheless, on each subdomains, the problems 
involve a huge number of degrees of freedom. In order to compute the solution efficiently, one 
must use model order reduction techniques. Two reduction techniques are proposed here:  

x the first one in order to reduce the number of DOFs, as many previous works [3], use the 
Craig-Bampton method to build a superelement of the linear part of the model; 

x the second one, is the Principal Joint Strain Basis based on Dissipated Energy. 
In a previous work, Festjens et al. [4] proposed the Principal Joint Strain Basis (PJSB) as a 
Model Order Reduction method for the joint domain. The idea is to find a very limited number 
of loadings R or boundary conditions UI that span most the loadings induced by the vibration 
modes of the whole structure. If the PJSB exists, it allows to build meta-models for the 
behaviour of the structure. Such meta-models are often represented as mechanical charts, see [1]. 
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To build the metamodels, a linear analysis is firstly performed on the global structure (full stick - 
interface tied) to determine the response function without any couplings. The basis Φ associated 
to the response function is normalized to stiffness matrix to give each eigenvectors the same 
strain energy. In order to reduce the joint model, one restrict the study to the joint: 

UI = ΦIQ  (8) 

with UI, the displacement field on the interface, and ΦI, the truncated modal basis restricted to the 
interface area. In order to build detailed model of the joint, we introduce the Principal Joint 
Strain Basis Dissipated Energy (PJSBDE) as the optimal ritz basis to span the displacement field 
in the joint interface. To compute this basis, we build an energy indicator, The difference is 
obtained by observing two configurations of the joint - one which will totally sticking in the 
contact area, the other rather slippery in the interface (Eq. 9). It is therefore assumed that the 
strain energy difference is representative of the energy dissipation. 

.   (9) 

where Ed is the strain energy coupling matrix , ΦI the eigenmodes matrix, KJ is the stiffness 
matrix of the ΩNL domain when the interface is tied, JK  is the stiffness matrix of the ΩNL  
domain when the normal load is very low (bolt loosened). To compute the PJSBE, the idea is to 
simplify the basis ΦI since there must be redundancy between the eigenmodes as they have been 
considered locally. To achieve this goal, we extract the eigenvalues of the Ed . They are sorted 
and the eigenvector associated with the greatest one is kept as the boundary conditions UI. The 
meta model is built using these boundary conditions and making the associated generalized 
varying over the range of loading we want to study. The result is used to define the loadings we 
apply to a very detailed Non linear Finite Element model of the joint. The reaction forces, R, on 
the boundaries are extracted and used to solve the dynamic equation on ΩL domain using 
Harmonic Balance Method 

4 CONCLUSIONS 

The theoretical frame proposed in this paper allows to simulate at a lower cost the dynamic 
behavior of the assembled structures. It is based on the use of methods of Ritz and meta - model. 
The latter are really interesting if several modes load the connection in the same way or if several 
connections are loaded in the same way. 
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ABSTRACT

This work deals with the longitudinal vibration and transverse vibration of a specific 1D peri-
odic framed structure, whose unit cells are interconnected beams. The associated dynamic be-
haviour will be investigated by the numerical Condensed Wave Finite Element method (CWFE)
and the analytical Homogenization method of Periodic Discrete Media (HPDM). Homogenized
models are deduced by the HPDM, while the numerical results obtained by CWFE serve as
the reference to validate these models. Dispersion curves are presented to evaluate the valid
frequency range of these models.
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1 INTRODUCTION

The framed materials are widely employed in various industries, such as aeronautics (lattice
beams), civil engineering (buildings), materials science (mechanics of foam and glass wool)
and biomechanics (vegetable tissue or bones). Numerous methods (numerical and analytical)
aiming to find their dynamic behaviors have been developed. Among the numerical methods,
the most widely used is the Wave Finite Element Method (WFEM). Based on Floquet-Bloch
theorem, WFEM employs the conventional finite element models of the unit cell to deduce the
dynamics of the whole structure [1, 2]. As for the analytical method, one frequently discussed
approach is the homogenization theory. In order to find an appropriate analytical continuous de-
scription for the periodic structures, several homogenization approaches have been developed,
such as material receptance method, asymptotic expansion method, and the homogenization of
periodic discrete media (HPDM) [3–5].

In this work, both analytical HPDM and numerical CWFE are employed to study a
periodic discrete framed structure. The principal objective of this work is to re-evaluate the
validity of the HPDM using the wave characteristics identified by CWFE.

2 TECHNIQUES AND RESULTS

The studied structure is a ’ladder’, which is formed by a large number of unbraced beams,
Figure 1. These identical beam unit cells follow the Euler-Bernoulli theory, and they are linked
by perfectly stiff and massless nodes.

2 C. Chesnais et al. / Wave Motion 57 (2015) 1–22

Fig. 1. (a) Examples of studied structures; (b) notation.

size can then induce the resonance of the soft component. This phenomenon which differs from diffraction leads to unusual
effective properties investigated in the pioneering work of Auriault and Bonnet in 1985 [1] (see also [2]) and observed
experimentally in [3,4]. In particular, the effective density is different from the real density and depends on the frequency.
The description of such composites at the macroscopic scale is a generalization of the Newtonian mechanics. This question
is frequently addressed with mass–spring models (such as the Maxwell–Rayleigh model cited in [5]) which are difficult to
realize in practice. The stratified composite studied by Auriault and Bonnet and the reticulated structure considered in this
paper are more realistic systems.

Indeed, in [6,7], it was shown that reticulated materials with only one constituent can also behave as locally resonant
materials. In that case, the stiffness contrast comes from the geometry of themicrostructure. Reticulatedmaterials aremade
up of interconnected beams or plates. Examples include materials of millimetric size such as foams, plants, bones, of metric
size such as the sandwich panels, stiffened plates and truss beams used in aerospace and marine structures, of decametric
size such as buildings. Since beams and plates are much stiffer in tension–compression than in bending, the propagation of
compressional waves with a long wavelength and the local bending modes of the elements can occur in the same frequency
range. The local resonance in bending of a reticulated material is used in [8] to attenuate vibrations over desired frequency
ranges.

In this paper, we investigate the consequences of the local resonance in bending on the dynamic behaviour of periodic
frame structures. Instead of considering wave propagation as in [6,7], emphasis is put on the modification of the features of
the longitudinal modes. For the first modes of a structure with a sufficiently large number of periods (or cells), deformations
occur on a length scale much greater than the size of a period. Therefore the homogenization method of periodic discrete
media (HPDM method) can be used to obtain a macroscopic description. This method, elaborated by Caillerie [9] has
been extended by a systematic use of scaling based on dimensional analysis [10,11] and applied to situations with local
resonance [6,7]. Itsmain advantages are that themacroscopic behaviour is derived rigorously from the properties of the basic
frame and that it provides an analytic formulation which enables to understand the role of each parameter. This method has
already given interesting results on the transverse dynamics of frame structures [11].

The framework of the study is described in Section 2 and the details of the HPDM method are given in Appendix B. Sec-
tion 3 presents the two possible macroscopic behaviours: without and with local resonance. In Section 4, the consequences
of the local resonance on the free and forced vibrations are analysed. These results are confirmed by finite element simula-
tions. Finally, Section 5 discusses the potential applications of this work. The differences between the idealized reticulated
structures and real buildings are examined and the important points for the design of new structures with prescribed prop-
erties are highlighted. Note that the demonstrations of some results about the harmonic vibration of Euler–Bernoulli beams
used in this article are gathered in Appendix A.

2. Framework of the study

2.1. Studied structures and kinematic descriptors

The studied structures are constituted by a pile of a large number N of identical unbraced frames called cells and made
of a floor supported by two walls (see Fig. 1). The walls and the floors are beams or plates which behave as Euler–Bernoulli
beams in out-of-plane motion. They are linked by perfectly stiff and massless nodes. The characteristics of the floors (j = f )
and the walls (j = w) are: `j length, aj thickness, h depth in the direction e3, Aj = ajh cross-section area, Ij = a3j h/12 second
moment of area in the direction e3, ⇢j density, Ej elastic modulus.

This paper deals with the harmonic vibrations of the structure at the unknown circular frequency ! of the longitudinal
modes. Therefore, every variable can be written in the following way: X(t) = <(X ei!t) where t is the time. Since the study
is conductedwithin the framework of the small strain theory and the linear elasticity, the time dependence can be simplified
and will be systematically omitted.

As explained in Appendix B, the HPDM method begins with the discretization of the dynamic balance. The study of the
momentum balance of the whole structure is exactly replaced by the study of the momentum balance of the nodes. Since

(a) Example (b) Notations

Figure 1. Studied structures [5]

2.1 HPDM

The HPDM is composed of two parts: discretization and homogenization. As the studied struc-
ture is made of interconnected beams, the dynamic balance of the whole structure can be ex-
pressed in a discrete form using the element balance and nodal balance. Thus, the kinematic
description of the structure can be described by the motions of the nodes. Then, the scale
separation being satisfied, the dynamic variables of neighbouring nodes can be connected by
Taylor’s Series, and the discrete dynamic variables at each node can be considered as specific
values of a continuous function. For more details, please refer to [3–5].

According to the HPDM, the homogenized models for the longitudinal vibration is:

⇤!2V + 2E
w

A
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V 00 = 0 (1)

And the homogenized models for the transverse vibration is:
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Where V is the mean longitudinal displacement, U is the mean transverse displacement,
⇤ is the linear mass of the cell, and K�1 = K�1
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is the shear stiffness of the cell, with
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2.2 CWFEM

The CWFEM is a combination of WFEM and mode reduction technique. Here, the fixed in-
terface component mode synthesis method, or the Craig-Bampton method, is chosen to reduce
mode order and speed up the calculation. Then, the method begins with establishing the motion
equation of the unit cell, where the mass and stiffness matrices M and K can be extracted from
conventional FE packages. After the reduction, the physical DOFs are then reformulated to a
reduced modal basis of modal DOFs. And the following process is the same as WFEM. More
details are shown in [6].

2.3 Dispersion curves

Here is an example structure, whose characteristics are listed in Table 1. To ensure the conver-
gence of the mesh, all the beams are discretized into 20 finite elements. Each unit cell contains
183 DOFs, among which 171 are internal DOFs. After the reduction, the first 20 fixed interface
modes are conserved.

l
w

(m) l
f

(m) a
w

(m) a
f

(m) ⇢ (kg m�3) E (GPa) µ

3 3 0.1 0.1 7600 2e11 0.3

Table 1. Material Properties

By considering the propagative waves in positive-x direction, the dispersion relation
obtained by CWFEM is given in Figure 2. And the associated wave shape is plotted in Figure
3. According to the wave shapes, the first wave corresponds to the transverse vibration and
the second wave appears to be the longitudinal vibration. A third wave shows up at about
10Hz. This is an atypical gyration mode which can not be predicted by HPDM. Thus, the first
two modes are investigated and the comparison of dispersion curves obtained by CWFEM and
HPDM are illustrated in figure 4.

Figure 2. The dispersion relation from 0-20 Hz

3 CONCLUDING REMARKS

The wave propagation feature of the 1D framed structure is studied through the dispersion
relation obtained by both HPDM and CWFEM. Good agreement between the two results is an

3

150



MEDYNA 2017 25-27 Apr 2017, Sevilla (Spain)

−1 0 1 2 3 4
−1

0

1

2

3

4

x (m)
y 

(m
)

f=15.0Hz, Real part k=0.8221 m−1

(a) Wave 1

0 1 2 3 4 5
−1

0

1

2

3

4

x (m)

y 
(m

)

f=15.0Hz, Real part k=0.0229 m−1

(b) Wave 2

Figure 3. Wave shapes (⇤) Undeformed unit cell (o)

0 5 10 15 20

0.005

0.015

0.025

R
e

a
l p

a
rt

 o
f 

K
(m

−
1
)

 Frequency (Hz)

 

 

CWFE

HPDM

(a) The wave 1

5 10 15 20
0

0.2

0.4

0.6

0.8

1

R
e
a
l p

a
rt

 o
f 
K

(m
−

1
)

 Frequency (Hz)

 

 

CWFE

HPDM

(b) The wave 2

Figure 4. Dispersion relations by CWFEM and HPDM

evidence that the homogenized model achieves a reasonable accuracy. And the valid frequency
range is limited in the first propagating zone.
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ABSTRACT 

 
The main aim of the present paper is to describe the issues and aspects related to the flow induced 
noise and vibrations, as well as the original features and the expected results of the ongoing 
research, mainly focused to a specific use of periodic structures for vibro-acoustic purposes. A 
literature review both on the flow excitation and on the induced response is reported. Some Early-
stage research steps are then expressed to give a complete overview of the project.  
 
Keywords: Flow-induced vibrations, radiated noise, TBL excitation, periodic structures, wave-base 
expansion, stochastic methods in structural dynamics     
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1 INTRODUCTION 

Among the many noise and vibration sources, the aerodynamic load is surely one of the most relevant in 
engineering problems. This peculiar excitation source usually operates in a broadband frequency range, 
which widely increases the analysis issues when dealing with the forced response of a generic structure. It 
also concretizes in a spatially correlated stochastic load, as for the case of the Turbulent Boundary Layer 
(TBL) excitation, thus, deterministic approaches are not feasible and correlation functions are used instead. 
 
Moreover, the need of investigating this peculiar field derives from its impact, in terms of radiated noise, on 
the acoustic comfort of transport means, such as airplanes. For example, the TBL, or the aerodynamic 
excitation in general, is the highest contributor to interior noise for an aircraft in cruise flight conditions. It 
affects even the structural dynamic behaviour of a submarine, despite its low speed. Launch vehicles, at lift-
off or in flight ascent, are subject to a hard acoustic and aerodynamic environment, random by nature.    
 
Depending on the frequency range of analysis different approaches are nowadays used, most of them limited 
by computational cost or invalidity outside specific operational borders. 
 
On the other hand, increasing interest is tangible on periodic structures and their features, which enable, 
through the use of particular wave-bases, to easily compute the dispersion characteristics and the forced 
response of structures by analysing a single repetitive element. Many industrially relevant structures, even 
stiffened and curved, can, in fact, be considered as a periodic assemble of elementary cells.  
 
Since these two fields seem to have been considered separately up to now, the ESR-2 doctorate has the target 
to bridge this gap enabling to efficiently evaluate the response of fluid-loaded periodic structures in a 
broadband operational field.  

2 LITERATURE REVIEW 

Over the past decades, many authors have investigated TBL both in terms of source characterization and 
application to dynamic and vibro-acoustic models, in order to simulate and calculate the radiated noise and 
the structural response. An overview, to set and clarify the problem background, is here reported. In any case 
the following assumptions will be given for granted:  

1. TBL fully developed, stationary and homogeneous in space. 
2. Weak coupling with the structural operator: pressure fields not influenced by structural vibrations. 
3. Random processes are considered as ergodic. 

2.1 TBL models 

Even though many advances in computational fluid dynamics and in turbulence modelling, some semi-
analytical models are still the most used. The Corcos model [1] and the Chase model [2] are among the 
references in this field. The first model, whose correlation function is here reported for clearness, describes 
the cross-spectra of the wall pressure fluctuations due to a TBL as a function of the sole distances between 
two different points, and as harmonically propagating only in the stream-wise direction. The coherence 
function is bi-dimensional and there is need to experimentally evaluate the stream/cross-wise correlation 
coefficientsD . 
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2.2 Structural Vibrations and Noise 

The aerodynamic loading has the peculiarity of being a spatially correlated load. This increases the issues 
when evaluating the structural frequency response. 
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Taking into account the structural mode shapes, the power spectral density of the velocity of a structure, 
subject to random excitations, can be expressed using Green functions [3]. This leads to the need to evaluate 
the joint acceptance function (JAF), which is a costly integration of the product of the correlation function of 
the excitation and the structural steady modes. Ichchou et al. [4],  for example, proposed an equivalent ROF 
excitation, with a wavenumber-space equivalence of the correlation function. This method allows an easier 
and cheaper evaluation of the JAF, in the medium-high frequency range, thus reducing the effort with respect 
to classic methodologies. On the other hand, the approach proposed by De Rosa et al. [5], making use of the 
modal aspects of the stochastic response, shows a simple and direct method to evaluate the vibratory field. 
Moreover, in [6], a methodology to reduce the computational cost of a full stochastic response is proposed. 
A pseudo deterministic modal excitation, based on the pseudo-excitation method (PEM), is simulated taking 
into account three different approximations, modulated for the three frequency ranges wherein the load 
matrix has different characteristics. Scaled models provided good accuracy in the medium high frequency 
range too, extending the applicability of a full model to higher frequencies [5]. 

Other methods proposed in literature make use of subsystem reductions, [7], to reduce the problem size in 
terms of degrees of freedom, nevertheless substituting the random load with deterministic point loads [8]. 
 
Different Approaches to couple a stochastic wall pressure field with deterministic vibro-acoustic models have 
been described by Matix et al., [9]. Among the techniques proposed the reciprocity method and the sampling 
of uncorrelated wall plane waves can be important inputs, even with deep modifications due to the limited 
applicability of these to very simple cases, in the framework of this EJD.  
 
A SEA formulation using finite element and periodic structure theory has already been proposed by Cotoni 
et al., [11]. Even though its limited applicability to the cases of Born-von Karman boundaries, this gives a 
starting point of view for energy approaches to the problem. 

2.3 Periodic Structure Theory 
Examples of periodic structures can be found in every engineering field. If we think to a fuselage bay, a 
piezoelectric patch, honeycomb sandwich panels or a train rail we can always imagine the same structure as 
composed of periodic elementary cells assembled together. In this case the Bloch-Floquet theorem can be 
applied in order to relate the dynamic properties of the whole structure, as forces and displacements, to the 
ones of a single substructure, and the ones of a substructure to the ones of one single side or node [10]. A 
Bloch wave has the here reported form, with β a phase constant and ur a spatially periodic function. 
 

{𝜓𝑟} = 𝑒−𝑖𝛽𝑟{𝑢𝑟} 
 

The field on one point can be related to the field in any other point by a magnitude variation and phase shift. 
The entire problem of the forced response can be reformulated in a different base, which is the wave-base. A 
transformation is performed between the physical domain, where the system’s behavior is described in terms 
of forces and displacement fields, and the wave domain, where the behavior is described in terms of waves 
travelling in the positive and negative directions, each with a specific amplitude depending on the excitation, 
boundary conditions and structure properties and geometries. 
Directly excited and reflected wave amplitudes can be then computed using this wave-base and evaluated in 
the reference position to get the structural response. 

3 FURTHER STEPS AND EXPECTED RESULTS 

As said a broadband strategy to deal with the flow-induced vibrations is expected as final result. The main 
and most directly tangible issues that arise are to be addressed to the different work-bases of the PST and 
classic TBL vibro-acoustic models, in which a full description of the discretized structure is mandatory. 
On the early stage phases, an analysis on where addressing the focus and efforts is needed. Both the load 
spectra and structural operator are characterized by peculiar features. Understanding on which aspect to 
operate is a key step for further developments.  
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A decomposition of the load cross-spectra might be a feasible approximation to make a first reduction of the 
size of the problem. Mathematical tools are already present for this purpose. 
Deeper reduction can be achieved when and if the spatial description needed for the excitation can be related 
to the wave-base of the periodic structure. This latter achievement might be a breakthrough since we can 
make use of the developments on the deterministic response of any periodic structure, which can be 
calculated at very low computational cost within the wave-base expansion. About this, the present authors 
have already investigated and validated a WFE/FE approach, applied in the case of curved and stiffened 
structures, to get the structural frequency response for any point load.  
The present authors are actually testing and validating a wave-based technique to get the stochastic response 
of a periodic structure. 
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ABSTRACT 

 
The purpose of this paper is to describe the major issues regarding the topic ESR-4 and entitled 
“Multi-layer core topology systems” from the VIPER project (vibroacoustic of periodic media). 
The objective is to study multi-layer periodic structures to carry out an optimization of each 
periodic layer allowing to obtain better sound transmission properties. Transfer Matrix Method 
(TMM) mixed with Wave Finite Element Method (WFEM) is commonly used to model the Sound 
Transmission Loss (STL) and the Sound Absorption Coefficient (SAC) of periodic structures 
assuming an infinite plate without boundary conditions. In addition, this structure is designed using 
one type of periodicity. In the framework of multi-layer periodic structures, each layer has its own 
periodicity and different to each other, leading to a more complex problem as the extraction of the 
unit periodic cell. Several simple cases might be exploited to investigate the influence of the periodic 
layers layout. 
 
Keywords: TMM-WFE / multi-layer periodic structure / Sound Transmission Loss / Sound 

Absorption Coefficient / Optimization 
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1 INTRODUCTION 

The problems related to the periodic structures sound properties are important in aerospace industry. 
Typically, this kind of structure is lighter whereas its stiffness is higher and lead, generally, to an 
unsatisfactory Sound Transmission Loss (STL) and Sound Absorption Coefficient (SAC). 
Modelling these structures is possible using the Transfer Matrix Method (TMM) mixed with Wave 
Finite Element Method (WFEM) and reduce significantly the computational cost. Nevertheless, the 
main assumptions define the structure as an infinite plate without boundary conditions. In addition, 
the topic ESR-4 for VIPER Project deals with muti-layer periodic structures which means that each 
layer has its own periodicity. Consequently, these periods as well as the possible phase differences 
between each layer involve extending the TMM to multi-layer periodic structures.  
The first step is to consider simple cases with specifics periodicities at each layer to investigate the 
effect on the STL and the SAC. Secondly, an optimization should be performed to obtain the best 
configuration for the structure allowing to satisfy the industrial constraints for the STL and the SAC. 
This paper gives an overview of the literature which will lead to the achievement of the objectives 
and will explain in details the major issues of this topic. 

2 LITERATURE REVIEW 

2.1 TMM applied to periodic structures 
The following picture (Figure 1) illustrate a multi-layer periodic structure: 

 

 

 
 

Figure 1. Multi-layer periodic structure. 
 

Each layer is composed by a periodic structure as honeycomb or auxetic cores with a certain 
periodicity not supposed to be the same as each other. Moreover, the layers’ depth could be 
different. Consequently, one periodic cell cannot be simply extracted from the whole structure to 
apply the TMM. 

Recently, two close methods proposed by [1, 2] released to calculate the STL of a periodic 
structure manipulating the dynamic stiffness related to the periodic cell. These methods combine 
the use of the WFEM and the TMM and decrease considerably the computational cost. However, 
assumptions are required and lead sometimes to noticeable differences, especially at low 
frequencies since the boundary conditions have a strong effect.  

2.2 Periodicity issues 
Figure 2 shows 3 different periodicities of different core nature (honeycomb, auxetic and 
rectangular). A periodic structure with 3 layers is represented. The green figure is the minimal unit 
cell for the honeycomb layer, which is obviously inappropriate to extract one periodic cell through 
the depth of the whole structure. One of the issues is to deal with these different periodicities finding 
this unit cell to be able to model the structure using the methods described in [1, 2]. 
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Figure 2. Different periodicities. 
 

Furthermore, added to the periodicity, there is a possible phase difference as well as an angle 
of rotation between each layer. Those could lead to a more complex problem.  

The first maintained approach will be a periodicity effect investigation modelling specifics 
cases. For instance, periodicities are multiple to each other allowing to model just one periodic cell 
containing all periodic layers but modifying the phase differences. It occurs that the previous 
exposed methods could be applied. In a first phase, the plate will be considered as laterally infinite, 
then, method as [3] is available to account for the finite size effects with a size correction factor.  

A new challenge is proposed to extend the TMM to multi-layer periodic structures with 
boundary conditions and considering the problems previously listed and related to layers, to finally 
determine the STL and SAC of the structure with an accurate prediction. This model will integrate 
new types of parameters characterizing the periodicity, the phase difference or the topology of each 
layer. Then, the next step is the optimization of this structure.  

2.3 Optimization 
One of the main purpose is to manufacture a new structure with a better sound transmission 
efficiency characterized by the STL and SAC. Several papers were written trying to describe the 
effect of meso-scale parameters on the STL of periodic structures as [4]. It is noticed that the cell’s 
geometry could alter the STL especially at the mid frequencies. The optimization will be based on 
the results of this article. The periodicity of each layer might be defined by several geometrical 
parameters as shown in Figure 3. 

 

 
Figure 3. Geometrical parameters for honeycomb cores [4]. 

 
Other parameters should be required as the phase difference between two periodic layers, as 

well as parameters which would define the geometrical period of each periodic layer.  
Performing an optimization needs to find out the inputs and outputs of the studied system. In 

this case, a multi-inputs/multi-output might be considered since the STL and the SAC are 
investigated. The developed algorithm will be able to identify the optimal geometrical parameters 
for each periodic layer. The optimization process depends on the frequency since the STL and SAC 
as well, and thus, will involve a wise choice for the frequency range of the study. Therefore, a 
relevant number of inputs will reduce the computational cost. For instance, thanks to [4], a 
conclusion is that the depth of each layer will have a significant effect on the STL but affecting the 
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stiffness-weight ratio of the layer. Consequently, this parameter might be constant for each layer to 
not influence the mechanical properties of the structure.  

3 CONCLUSIONS 

An overview of one topic of the Viper Project is proposed. A study is ongoing to model the sound 
transmission properties of multi-layer periodic structures which will serve to develop an 
optimization algorithm to manufacture a new optimal structure. The following major issues are 
exposed: boundary conditions, periodicity and the optimization. Nevertheless, an approach using 
specific cases at the beginning will lead to a better understanding of the periodicity effect and other 
parameters as the phase difference or the topology of each layer. The computation will be 
established according to the recent procedure described in papers [1, 2]. Finally, this topic will have 
an interest from an industrial point of view since it is useful at early stage of the manufacturing 
having all the optimal parameters of the structure.  
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ABSTRACT 
 
The aerospace segment makes large use of cellular structures in sandwich panels, which are 
known to possess good stiffness while saving weight. Metallic cores are currently being replaced 
by different classes of composites, especially because of their poor vibration transmissibility. The 
inclusion of vibroacoustics constraints in the design process gives the opportunity to obtain 
multifunctional structures that still provide mechanical efficiency while introducing absorption, 
tunable vibration transmissibility or damping capabilities. In this work, natural fibre prepregs are 
turned into periodic panels using the ancient Japanese art technique of cutting and folding paper, 
known as Kirigami. Flax fibre with Polypropylene matrix was used to obtain a cellular structure 
with improved absorption properties and therefore, thermoforming was adopted due to its 
compatibility with Kirigami and thermoplasticity of the matrix. A dedicated mould and 
numerically controlled cutters as well as adhesive were adopted to complete the Kirigami 
procedure. Numerical simulations were carried out in order to identify the best performing 
candidates in terms of the properties mentioned above and through-the-thickness vibration 
transmissibility. Consequently, the selected configurations were manufactured and tested. This 
natural fibre composite cellular platform will be used for further improving the vibroacoustic 
properties of the manufactured cores by embedding periodic inclusions of various type and 
materials within the core, and by analysing different cell topologies.  
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Fig1. Flax/PP Kirigami hexagonal core 

 

 
Fig2. Honeycomb deformed shape and relative displacements at f=1832 Hz. 

 

 
Fig3.Through-the-thickness transmissibility analysis, 4% damping. 
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ABSTRACT 

 
The design based on periodic elements is a powerful strategy for the achievement of lightweight 
sound packages and represents a convenient solution for manufacturing aspects. An interesting 
research target is the inclusion of vibroacoustic design rules at early stage of products development 
through the use of porous media with periodic inclusions, which exhibit proper dynamic filtering 
effects; this offers different applications in transportation (aeronautics, space, automotive, 
railway), energy and civil engineering sectors, where both weight and space, as well as 
vibroacoustic integrity and comfort, still remain as critical issues. This work is a literature review 
which mainly focuses on three aspects concerning periodic inclusions in porous materials: the 
concept of substitution of a fluid layer for a porous layer, the Transfer Matrix Method and the 
descriptions of two alternatives to multi-layering. 
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1 SUBSTITUTION OF A FLUID LAYER FOR A POROUS LAYER 

1.1 Description of sound propagation in porous media 

On a microscopic scale, sound propagation in porous materials is generally difficult to study 
because of the complicated geometries of the frames. Only the mean values of the quantities 
involved are of practical interest. The averages must be performed on a macroscopic scale, on a 
homogenization volume with sizes large enough to become meaningful. At the same time, these 
sizes must be much smaller than the acoustic wavelength. The description of sound propagation in 
porous material can be complicated by the fact that sound also excites and moves the frame of the 
material. If the frame is motionless, in a first step, the air inside the porous medium can be replaced 
at the macroscopic scale by an equivalent free fluid. This equivalent fluid has a complex effective 
density ρ and a complex bulk modulus K. The wave number k and the characteristic impedance Zc 
of the equivalent fluid are also complex [1]. 

1.2 An empirical model provided by Delany and Bazley 

The k and Zc have been measured by Delany and Bazley (1970) for a large range of frequencies in 
many fibrous materials with almost unit porosity. According to these measurements, the quantities 
k and Zc depend mainly on the angular frequency ω and on the flow resistivity σ of the material. 
Good fits for k and Zc have been obtained: 

𝑍𝑐 = 𝜌0𝑐0[1 + 0.057𝑋−0.754 − 𝑗0.087𝑋−0.732].    (1) 

𝑘 = 𝜔
𝑐0

[1 + 0.0978𝑋−0.700 − 𝑗0.189𝑋−0.595].    (2) 

where ρ0 and c0 are the density of air and the speed of sound in air; X is a dimensionless parameter 
which is suggested to be valid within the range 0.01 < 𝑋 < 1.00. 
These relations will not provide perfect predictions of acoustic behaviour of all the porous materials 
in every frequency ranges. Nevertheless, the laws of Delany and Bazley are widely used and can 
provide reasonable orders of magnitude for Zc and k. With fibrous materials, which are anisotropic, 
the flow resistivity must be measured in the direction of propagation for waves travelling in either 
the normal or the planar direction. The case of oblique incidence is more complicated. It should be 
pointed out that after the work by Delany and Bazley, several authors suggested slightly different 
empirical expressions of k and Zc for specific frequency ranges and for different materials [1]. 

1.3 Mesostructure based models 

In the case of common porous materials, an analytical description of sound propagation that takes 
into account the complete geometry of the microstructure is not possible. This explains why the 
models of sound propagation in these materials are mostly phenomenological and provide a 
description only on a large scale [1]. In 1987, Johnson, Koplik and Dashen proposed a semi-
phenomenological model to describe the complex density of an acoustical porous material with a 
motionless skeleton having arbitrary pore shapes; 4 parameters are involved in the calculation of 
this dynamic density: the open porosity ϕ, the static air flow resistivity σ, the high frequency limit 
of the tortuosity α∞ and the viscous characteristic length Λ.  In 1991, Champoux and Allard 
introduced an expression for the dynamic bulk modulus for the same kind of porous material based 
on the previous work by Johnson et al.; 2 parameters are involved in the calculation of this dynamic 
bulk modulus: the open porosity ϕ and the thermal characteristic length Λ’. In Biot-Allard model, 
which includes the description of the skeleton movement, a material is characterized by a number 
of conventional mechanical parameters (density of the skeleton, Young's modulus of the skeleton 
in vacuum, Poisson's coefficient of the skeleton in vacuum, structural damping), as well as by 
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specific parameters called Biot parameters (porosity, resistivity, tortuosity, viscous characteristic 
length, thermal characteristic length). 

2 MULTI-LAYERED SYSTEMS WITH POROUS MATERIALS MODELED 
USING THE TRANSFER MATRIX METHOD 

The description of the acoustic field in a porous layer is complicated by the presence of the shear 
wave and the two longitudinal waves. In a layered medium with porous layers, elastic solid layers 
and fluid layers, a complete description can become very difficult. A matrix representation of sound 
propagation well consolidated in literature is described here. The stratified media are assumed 
laterally infinite. They can be of different nature: elastic solid, thin plate, fluid, rigid porous, limp 
porous and poroelastic. However, the different media are assumed to be homogeneous and 
isotropic. Figure 1 illustrates a plane acoustic wave impinging upon a material of thickness h, at an 
incidence angle θ. Various types of waves can propagate in the material, according to their nature. 
The x1 component of the wave number for each wave, propagating in the finite medium, is equal to 
the x1 component kt of the incident wave in the free air: 

𝑘𝑡 = 𝑘 𝑠𝑖𝑛 𝜃.      (3) 

being k the wave number in free air. Sound propagation in the layer is represented by a transfer 
matrix [T] such that 

𝑽(𝑀) = [𝑇]𝑽(𝑀′).     (4) 

Where M and M’ are set close to the forward and the backward face of the layer, respectively, and 
where the components of the vector V(M) are the variables which describe the acoustic field at a 
point M of the medium. The matrix [T] depends on the thickness h and the physical properties of 
each medium [1]. 

 
 

Figure 1. Plane wave impinging on a domain of thickness h. 

3 ALTERNATIVES TO MULTI-LAYERING 

Although porous materials are commonly used for vibroacoustic applications, they suffer from a 
lack of absorption at low frequencies compared to their efficiency at higher ones. This difficulty is 
usually overcome by multi-layering. However, while reducing the impedance mismatch at the air-
material interface, the efficiency of such devices relies on the allowable thickness [2]. 

3.1 Embedding rigid inclusions 

One way allowing to enhance the low frequency efficiency of sound packages consists in 
embedding periodic rigid inclusions in a porous layer [3]. If the radius of these periodic inclusions 
is comparable with the acoustic wavelength, then an increase of the absorption coefficient can be 
observed. In [3], the influence of the periodic inclusions on the absorption coefficient was explained 
by excitation of additional acoustic modes which dissipate acoustic energy. When the porous layer 
is backed by a flat rigid surface and when only one inclusion per unit cell grating is embedded, an 
additional trapped mode can be excited. This results in a quasi-total absorption peak at a frequency 
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below that of the usual quarter-wavelength resonance in the homogeneous layer case. Other 
interesting studies related to volume heterogeneities are in  [4, 5-8]. 

3.2 Embedding Helmholtz resonators 

The homogenization theory cannot be applied to cellular material made of large periodic unit-cell. 
In this case, a low frequency solution to improve the acoustic efficiency of passive open-cell porous 
materials is to embed Helmholtz resonators (HR) in the porous matrix. Doing so, at the Helmholtz 
resonance frequency, the transmission loss is greatly improved and the sound absorption of the host 
material is decreased if it is made of a highly sound absorbing material. One of the first works 
describing such structure is a patent filed in by Borchers et al. [6]. Much later, Sugie et al. [7] 
proposed a similar heterogeneous material made of a fibrous sound absorbers with resonant 
inclusions. More recently, the acoustic community had shown a keen interest in the equivalent 
material (also called effective material or metamaterial) presenting a negative bulk modulus at the 
HR resonance frequency [8]. In [9] the sound absorption efficiency is investigated in case of rigid 
backed acoustic foams with resonant split hollow cylinder inclusions. Under the assumption that 
the HR periodicity is much smaller than the acoustic wavelength, the resonant materials are usually 
modelled as homogenized equivalent material with modified bulk modulus to account for the 
presence of the resonant inclusion [8]. However, as already stated, cellular resonant material with 
large periodicity obviously prevents the use of the homogenization method. In this case, the 
orientation of the HR neck may have a strong influence on the sound absorption behaviour of the 
resonant material [9, 10]. 
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ABSTRACT 
 
Quasi periodicity and variability effects on structures are spread in all the engineering branches. 
The inherent research works are carried out with both numerical and experimental activities. A 
more specific goal is the analysis of the influence of such effects on the vibroacoustic response. The 
modern tools for investigating the most significant impacts of imperfections and irregularities on 
the vibrational and acoustical response of a given structure are codes based on combination of 
wave and finite element, spectral finite elements, transfer matrix methods and the adoption of 
stochastic variables. In view of the foreseen work inside the VIPER project, this paper refers to the 
analysis of the most recent literature and possible initial strategy. 
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1 INTRODUCTION 

“Quasi-periodicity is the property of a system that displays irregular periodicity. Periodic 
behaviour is defined as recurring at regular space and time intervals. Quasi-periodic behaviour is 
a pattern of recurrence with a component of unpredictability that does not lend itself to precise 
measurements”: this simple definition is taken from Wikipedia. 

It precisely points to the core of the problem. In fact, an increasing literature is appearing on 
methods for the analysis of a given system by replicating only its elemental cell in space directions 
and time scale, thus simulating conditions of perfect periodicity. How to simulate systems, if perfect 
periodic conditions are violated, is still to be analysed together with their influence. 

This paper belongs to the VIPER project (http://viper.ec-lyon.fr.) which is fully centred on 
the vibroacoustic of periodic media. For the periodic structures, the definitions of the effect of quasi-
periodicity is to be investigated in order to understand the physics, how this can be modelled and 
what are the effects of the final design. In fact, it will be important to analyse if and how the presence 
of imperfections or irregularities, on quasi-periodic bases, can have a significant impact on the 
vibro-acoustic responses of given components.  

It is expected and already shown that the effects on micro-scale can influence the 
performance on macro-scale: the engineering design can receive important information if more light 
is shed in this link. Several effects are known in literature (the Anderson localization is one of the 
most famous) but some insights are now necessary in order 

x to improve the simulations of these kind of problems;  
x to move to prototypes which can demonstrate on experimental basis the achievement of 

increased vibroacoustic performances (structural damping and/or acoustic transmission 
loss). 

2 LITERATURE REVIEW 

Quasi periodic structures are scattered from those identical cells which has a periodic form in the 
assembly of a piece of element in the structures. The analysis could be done by the presence of 
imperfection or irregularity which have a significant impact on the vibrational and acoustic 
behaviour.  

The difference between imperfection or irregularity in a quasi-periodic sequence has to be 
defined: the importance of this step should not be underestimated.  

In [1], an enriched finite element method is presented to solve various wave propagations. 
However, the standard finite element method is not very effective for utilising the solution of the 
wave propagation problems [2]. The errors introduced in this method have been identified and 
analysed and they are due to the fact the wave propagation analysis is based on piecewise 
polynomial approximation: the accuracy of the numerical solution becomes rapidly worse with 
increasing wave number.  

Ref. [3] and [4] are a good example of how the use of periodicity and the Wave and Finite 
Element can be real enhancements of the predictive quality.    

An extension of WFEM is presented in [5]: the actual status of the wave and finite element 
method has been identified as a best approach for the vibroacoustic analysis over periodic structures. 
The numerical method has been carried out via Bloch’s theorem and imposing periodicity 
conditions to a single cell which represents a repetitive part of the whole structure. The results show 
a promising agreement between Wave and Finite Element Method (WFEM) and Classical Finite 
Element Method (CFEM). Experimental testing and validating comparisons on stiffened cylinders 
are ongoing at Pasta-Lab. 
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It has to be remembered that the prototype under research and investigation is a structural 
component that has characteristics which periodically repeat in one or more directions. In general, 
a generic structure obtained as an assemble of identical elements, called cells, which can be 
considered as periodic structures. The modelling of a short section of the waveguide is expressed 
by supposing time harmonic motion, the equation of motion is implied by discrete coordinates, 
relating nodal degrees of freedom 𝑞 and force 𝑓 of the undamped section:  

 
(𝐾 − 𝜔2𝑀)𝑞 = 𝑓  (1) 

 
where 𝐾 and 𝑀 are the stiffness and mass finite element matrices, [4-8]. The analysis of periodic 
systems is thus well undertaken through WFEM. 

The analysis of transmission and diffusion at joints between waveguides as well as the 
damped periodical waveguides were investigated in several research works, [7-8].  

In [9-11], the first models to take into account the irregularities are presented: they are very 
recent and represent useful investigations to guide the next required steps. 

At the moment, the approach adopted in [3] seems the most promising for reproducing the 
forced response of periodic structures in presence of quasi-periodicity and variability effects. The 
flexibility of getting the K and M matrices from standard finite element codes and the definition of 
an external post-processing code appears as the most viable procedure even in view of the expected 
variations to be included for simulating the quasi-periodicity.   

3 STRATEGY 

The envisaged steps for facing a such complicated problem are the following: 
A. definition of the quasi-periodicity;  
B. analysis of the nature and sizes of the causes altering the perfect 

periodicity; 
C. definition of the required  

1. mathematical,  
2. numerical and  
3. experimental tools. 

They are all challenging. In Fig. 1 a sketch of the possible problems/configurations is 
reported: the perfect periodic system (a) can be altered to get a (b) quasi periodic system in terms 
of shapes, junctions, sizes, materials, manufacturing issues, etc.; what does quasi mean?  

These effects could be evaluated adding each of them on a predictive environment: this will 
lead to development of a new class of codes expected to be based on a combination of wave and 
finite element, spectral finite element, transfer matrix methods and the adoption of stochastic 
variables, if needed. It has to be considered also the possibility to use non-deterministic 
(possibilistic) algebras as those associated to the fuzzy-logic or the interval algebra.  

In literature, it is already shown that a sandwich panel, optimized versus the vibroacoustic 
performance, with added random properties of the core can exhibit stop-band characteristics in 
some frequency ranges. Therefore, the analysis of these quasi-periodicity effects is much closer to 
the engineering application than many others trying to simulate real structures with 3D models with 
huge computational costs. 
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(a). Periodic System, (b). Quasi-Periodic System 

Figure 1: Sketches of the periodic and quasi-periodic distribution of repeated cells. 
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ABSTRACT 
 

A better knowledge of the structural response of periodic structures can be achieved through 
the classification of possible uncertainty, to be included in the predictive models. Nowadays, 
the wave finite element approach is used for the simulation of periodic structures to reduce 
the computational cost. On the contrary, it introduces ahigher complexity in the model 
formulation. Recently, the spectral approach has shown its relevance in the uncertainty 
analysis of structures. 
This paper presents the literature on uncertainty effect on vibroacoustic of periodic media. 
The present work is an initial literature study on available analytical and numerical 
approaches for capturing the parametric and nonparametric uncertainties. 
.  
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1. INTRODUCTION 
 

The research community has been developing mathematical representation in the form of a 
mathematical model for a wide class of physical system to understand the process. Moreover, these 
models are being used to make the decision for design and manufacturing. It true that no 
mathematical model can be an ideal representation of physical system it is intended to capture 
because of the modeling assumption and limits of digital computing machines where numerical 
simulation performed. Although the digital computing is extending its wing in last decade, there are 
constraints of time and cost of computation. To the best of authors understanding, all derived model 
involve uncertainty and which are bound to come. The reason is how to model is represented, and 
how the physical system behaves in reality, there is always the issue of the goodness of fit.   

The vibroacoustic performance and dynamics of the structure areimportant subjects in the 
area of aeronautic, transport, energy and space. To meet the regulatory compliance and user 
requirement, the designer accounts for variation in the input parameter at the design phase. For 
example, in the space industry designers consider the uncertainty in the system parameter to ensure 
that the during launch and orbital operation the vibration level are in a range that is acceptable. 
Which open plethora of opportunity for considering the effect of uncertainty with theaim to 
improve and develop the model for reliable and safe design. Keeping the view this paper summaries 
uncertainty quantification, uncertainty classification, modeling of uncertainty system and the most 
commonly used technique to analyses uncertainty in the low to high-frequency model prediction. 

 

2. UNCERTAINTY QUANTIFICATION: 
 
In general term the uncertainty quantification involves the five steps: 

 
1. Identification: Finding the source and location of uncertainties in the system. In reality many 

sources of uncertainty such asuncertainties due to variabilities in the design parameter values, 
environmental condition, initial conditions, boundary conditions, imprecise and simplified 
physics, missing physics, model implementation, numerical errors and most importantly due 
to lack of unavailability of sufficient data  

2. Characterization: Finding the form they are available. Mostly, the parametric uncertainty is 
characterized and defined in the form of probability distribution and intervals bound. Whereas 
nonparametric uncertainty so-called model uncertainties can have their form of uncertainties. 

3. Propagation: Understanding how uncertainties are transmitting and spreading in the model 
and finding a relation between parameter uncertainties and response of the model.  

4. Analysis and reduction: Establishing the relation between the uncertainty and its influence on 
the system response and reasoning of the same. Once it is done, what corrective measure can 
be taken to have the reliability of the original system. 
 

3. MODELING OF UNCERTAINTY SYSTEM: 
 
The uncertainty in structural response such as frequency response function, natural 

frequency, and mode shape are the result of propagation of uncertainty (may be parametrical or 
non-parametric). To capture the response with uncertainty in models and parameters, various 

Identification Characterization Propagation Analysis and reduction 
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research group spread across the world using various approach to modeling the uncertainty. The 
basic uncertainty block of technique/tool available for uncertainty modeling in the structural 
dynamics[1-7] can be drawn (Figure 1). 

 
Figure 1. Uncertainty modeling approaches 

 
4. VIBROACOUSTIC ANALYSIS WITH UNCERTAINTY 

 

In thevibroacousticproblems, the interaction between a solid and fluid field in the form of 
vibration and sound happen respectively. The use of the numerical method for the numerical 
modeling and simulation varies, and itdepends on the frequency range of interest.  

 
Figure 2.Vibroacoustic analysis methods without uncertainty 

 
A graphical representation is drawn (Figure 2) of the technique available for 
vibroacousticsimulation[8-11].When uncertainty introduced in the modeling and simulation of 
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vibroacoustic periodic media the low-frequency domain is unaffected (assumption), the high-
frequency domain is modeled using statistical energy approach which can accommodate uncertainty. 
However mid frequency domain is in question. A tree is drawn (Figure 3) as based on available 
literature.

 
Figure 3.Vibroacousticanalysis methods with uncertainty 
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ABSTRACT

The understanding of wave propagation in a metamaterial with hierarchical, auxetic rectan-
gular perforations is presented in this work. The metamaterial is a 2D structure with chain-
ing horizontal and vertical perforations exhibing auxetic in-plane behaviour. Some numerical
eigenvalue tools are used for the dispersion analysis of this structure. It is first observed that
the total width of Band gaps increases with the hierarchy. In order to validate the design of the
metamaterial, results issued from a full 3D model of a finite structure embedding an interface
composed by a distributed set of the unit cells are presented. After this step, a comparison
between the results obtained using the structure simulation and the experimental results are
presented with critical analysis.
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1 INTRODUCTION

A periodic medium is a material or a structural system that exhibits spatial periodicity. The
study of periodic structures has a long history in the field of vibrations and acoustics [1]. This
topic has interested researchers over the years, and a growing activity on this field is observed on
the last years, with the objective of designing structures exhibiting properties that conventional
ones cannot possess [2]. Dynamical behaviour analysis of plates with hierarchical, auxetic
rectangular perforations are described in this paper.

2 GEOMETRY OF THE HIERARCHICAL PERFORATED AUXETIC LATTICE

Figure 1a shows the structural dimensions of the square lattice with rectangular perforations.
The symmetry of the geometry in the x� y plane allow to define the entire geometry of the unit
cell using only 2 parameters: the void aspect ratio, AR = a/b and the intercell spacing S [3].

a S

b

r

(a)

COMSOL 4.4.0.150

(b)

Figure 1: a) Geometry parameters of the base unit cell. b) Hierarchical, auxetic rectangular
perforations at Level 1, 2 and 3 with AR = 4 and from S = 0.2 to S = 0.8.

As a reference, the level 1 [3] is compared with the hierarchical levels 2 and 3. At level
1, 4 rigid squares are present in the unitcell. In each square, the reference structure is used by
applying a scale ratio to obtain the level 2. Exactly the same at level 3, in this subunit. The
parametric analysis is carried out with the aspect ratios (AR), the intercell spacing (S) and the
level of hierarchy. Figure 1b shows how intercell spacing change in both levels of hierarchy.
Voids are larger than a low parameter S and the porosity increases with the level of hierarchy.

3 DYNAMIC PROPERTIES

3.1 Dispersion analysis

Properties are calculated using the finite element model of the unit cell with Floquet-Bloch
periodic conditions applied on the borders of the domain [4].

The results of the analysis correspond to dispersion diagrams which only provides in-
formation on the contour of the Brillouin zone allowing identification of the bandgaps. Hence,
only specific directions are investigated.

Band gaps are observed at some specific values of AR and S (see figure 3).
These band gaps are called omnidirectional band gap because whatever the direction of

the wave propagation, this wave can not propagate. In our case, a particular interest is given
to omnidirectional band gaps. To compare the results of the eigenvalue analysis at different
levels we have computed for each geometry configuration of the perforated composite plate

2
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Figure 2: Dispersions in the k space for the lattice with AR = 4, S = 0.3 for a) Level 1, b)
Level 2 and c) Level 3.

the equivalent volume fraction (�) and computed by Finite Element the natural frequency of
a rectangular plate (plane stress) with the same overall dimension of the lattice with Poisson’s
ratio equal to the one of the core material (⌫

c

), scaled density ⇢ = �⇢
c

and equivalent Young’s
modulus Ē = E

c

�2. The resulting fundamental frequency is denominated as !
p

. The modal
density increase with the hierarchy, it is true whatever the value of the parameter S is. The
reader is invited to refer to a previous article [5] for details.

3.2 Finite structure

The main goal of this section is to validate in a finite structure the phenomenon observed on
an infinite structure. A finite element model is presented. This is followed by an experimental
validation. The metamaterial (68 ⇥ 28 ⇥ 0.4 cm3) includes an interface composed by 4 ⇥ 4
unit cells (7 ⇥ 7 ⇥ 0.4 cm3) (figure 3a). The metamaterial is made in acrylic which properties
properties are E = 3.01 GPa, ⌫ = 0.375 and ⇢ = 1190.25 kg/m3 with a loss factor (⌘) equal
to 4.2%.

F
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Figure 3: a) Finite structure with an interface composed by 16 unit cells for level 1. The point
load is marked by a red dot. b) Numerical frequency responses for level 1. Average squared
velocity amplitude |V x|2 for the input plate (IN) and the output plate (OUT) respectively in
blue and red. The grey shape represent the bandgap predicted by the dispersion analysis.

Numerical frequency responses for level 1 are presented in figure 3b, squared velocity
amplitudes |V x|2 are averaged for the input plate (IN) and the output plate (OUT). The bandgap

3
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predicted by the dispersion analyse is represented by a grey shape. An output attenuation is well
observed in the frequency range predicted by bandgap.

4 EXPERIMENTAL VALIDATION

The metamaterial is realised by laser cutting in a whole 4 mm acrylic glass plate. This ex-
perimental validation is a real challenge. Boundary conditions need to respect the plane stress
condition. Figure 4 illustrates the experimental facility with the metamateriel, its bracket, the
vibrometer, the force sensor and the accelerometer. A shaker provides clean harmonic excitation
up to 5 kHz.

Figure 4: Experimental facility with the main equipment as the metamateriel and the vibrometer.
A zoom is done on the excitation system, a shaker instrumented with force sensor cell and
accelerometer.

5 CONCLUSION

This study shows the possibility of creating bandgaps by simple cutting in plane structures. The
damping is important, an overall smoothing of the frequency response functions is observed
and a very large attenuation between the input and the output of the network. The experimental
setup was a real challenge. The results engage a critical analysis which highlight the strengths
and weaknesses of this experiment.
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ABSTRACT

A vast literature has been devoted to the transverse vibration and the sound radiation of ribbed
plates over the last decades. The present study has been motivated by the analysis of the dynam-
ical behaviour of piano soundboards. As a rough approximation, a piano soundboard can be
considered as an orthotropic ribbed plate. Our purpose is to establish condensed descriptions
for their dynamics. For low frequencies, regularly ribbed plates can be considered as homo-
geneous plates. It is usually considered that homogenization is valid only up to a frequency
corresponding roughly to the confinement of one half wave-length between the (periodically
spaced) ribs. Beyond that frequency, depending on the relative characteristic mobility of the
ribs and that of the base plate, the ribs may constrain transverse waves to be guided between
them. We focus here on the spatial spectrum of the normal modes of the ribbed plate (2D
Fourier transforms of the modal shapes). It appears that most of the peaks of each spectrum
can be seen as belonging to one of a few dispersion branches in an appropriate (!, k)-plane.
Interestingly, different peaks of a spectrum (of one given mode) usually "belong" to different
dispersion branches. When valid, this description may prove an interesting intermediate step to
derive approximations for the sound radiation of such plates.

180



MEDYNA 2017 25-27 Apr 2017, Sevilla (Spain)

1 INTRODUCTION

This study has been motivated by the analysis of the dynamics of piano soundboards, which
are sophisticated ribbed plates[1]. We consider here a more simple system which consists in a
thin rectangular plate represented in Fig. 1 (axes of the Oxy-frame of reference parallel to the
sides of the rectangle, L

x

= 1.39 m, L
y

= 0.91 m, h = 0.008 m). The regularly-spaced ribs are
oriented in the OX-direction (✓ = (Ox, OX) =1.0065 rad), with inter-rib spacing d =0.13 m.
Materials are orthotropic (⇢ =392 kg m�3, E

X

=11.5 ⇥ 109 Pa, E
Y

=0.47 ⇥ 109 Pa for the
main plate and for the ribs, corresponding to one quality of spruce). Note that the geometry
does not correspond to the so-called special orthotropy configuration (OX = Ox) and that
(incidentally, not necessarily) the ribs are in the direction of one orthotropy axis. Here, boundary
conditions have been chosen as clamped all around the plate.

The plate has been modelled as a thin plate (Kirchhoff-Love theory) and treated by
means of FreeFem++, a Finite-element software, yielding the normal modes.

2 MODAL SPECTRA
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Figure 1: Left: The ribbed plate. Right: largest peak of all the modes as a function of the
corresponding eigenfrequency (the oblique thin lines are a graphic artefact)

Since no dissipation is included in the mechanical model, the eigenvectors are real.
These modal shapes are represented with real numbers (positive or negative) and no phase (no
information is lost). Given that choice, a 2D Fourier transform has been applied to all modal
shapes, yielding modal spectra S

m

(k
x

, k
y

) 2 R.
As a first step, we extract the dominant peak principal from each spectrum. Its magnitude is

represented in Fig. 1 as a function of the angular frequency of the corresponding normal mode.
The figure displays three distinct branches which look like dispersion branches. However, one
must keep in mind that data in this figure only represent a very partial view on the modes
(limited to their principal wave-number).

Another view on all modes consists in adding all (spatial) spectral components in the
(k

x

, k
y

)-plane. In such a representation, the eigenfrequencies are lost, as well as any form of
visual clarity of the corresponding diagram (not represented). The interesting point is that clarity
is retrieved when an appropriate !-scaling is applied to the wave–number components k

x

or k
y

,
as done in the next sections. The first scaling (Section 3) corresponds to a homogeneous-plate

2
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dynamics whereas guided-wave regimes (not completely understood at this point) correspond
to the first and second branches (Section 4).

3 HOMOGENEOUS-PLATE BRANCH
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Figure 2: Dispersion maps. Left frame: scaling applied on modes with eigenfrequency below
2kHz. Right frame: same, on modes beyond 2kHz.

The dynamical equation ruling the transverse motion w of the non-homogeneous or-
thotropic thin plate is
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where D1 and D3 on one hand, D2 and D4 on the other hand are of the form

D1,3 =
E

X,Y

h3

12(1 � ⌫
XY
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Y X

)
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+

G
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Y X
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X
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XY
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Y

) (2)

The dynamical rigidities D are not constant over this non-homogeneous plate.
It is commonly accepted that homogenization theories can account for the dynamical

behaviour of non-homogeneous plates at low frequencies only. Looking at Fig. 1, one can infer
that more or less all modes below fH (with 1.5 < fH < 2kHz) could be described as normal
modes of a homogeneous plate. Applying homogenization to the ribbed plate considered here,
as in studies reported in [1], yields E

XH =1.45 ⇥ 109 Pa, E
Y H =5.51 ⇥ 109 Pa, ⇢ =227 kg m�3

and dH =16.9 mm and the following dynamical equation for the equivalent homogeneous plate:

D1Hk4
X

+ (D2H + D4H)k2
X

k2
Y

+ D3Hk4
Y

= ⇢hH!2 (3)

in the reciprocal space (k
X

, k
Y

). By construction, the homogeneous equivalent plate has an
elliptic orthotropy: D2H + D4H =

p
D1HD3H.

With K = k/
p

! (generic notation), Eq. (3) becomes

D1

⇢h
K4

X

+
D2 + D4

⇢h
K2

X

K2
Y

+
D3

⇢h
K4

Y

= 1 (4)

We represent the results of this rescaling on all the modal spectra in Fig. 2. By analogy with the
"dispersion curve" terminology in the (!, k)-plane, we call "dispersion map" this representation
of the spectra of the normal modes.

3
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Several features are quite remarkable here. (a) The left frame exhibits the expected
homogeneous dynamical behaviour, but for nearly all the spectral components of the modes,
not only the principal peaks. The figure is nearly elliptical and the expected quantities D1H
and D3H are retrieved on the long and short axes respectively. (b) This homogeneous dynamics
extends far beyond the upper frequency fH beyond which the homogenization becomes invalid
for describing the whole dynamics of the ribbed plate. This applies to part of the spatial spectra,
as shown by the large blurry yellow zone, which does not follow this well-identified dynamics.
(c) Above fH, the elliptic homogenization is slightly altered.

4 GUIDED-WAVE BRANCHES
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Figure 3: Dispersion maps with scaling by
p

! � !1,2 applied to k
Y

, the k
X

-axis remaining
unchanged. Each scaling is suited to one guided-wave branch. Left: all modes with an eigen-
frequency above !1. Right: all modes with an eigenfrequency above !2.

We observe in Fig. 1 that above a transition occurring around ⇡ 1.5 � 2kHz, the prin-
cipal wavenumber of the two additional branches is essentially driven by its k

Y

-component. A
more detailed analysis reveals that the k

X

-components of the first guided-wave branch are all
in the [0, ⇡/d] interval (more or less uniformly distributed) whereas the k

X

-components of the
second guided-wave branch are more scattered in the [3⇡/(2d), 3⇡/d] interval: modes start to
exhibit a guided-wave behaviour. As opposed to the previous section, the scaling here is byp

! � !1,2. Hypothetically, the cut-off frequency !1,2corresponds, dynamically, to a low k
X

,
characteristic of the guided wave. An effective dynamical rigidity of the waveguide can be
derived from Fig. 3. Surprisingly, its value appears to be less than that of the plate without ribs.

5 CONCLUDING REMARKS

Interestingly, the homogeneous and guided-wave regimes are not exclusive of each other. In
fact, each mode tends to display some spectral components on each of the different branches (at
least, above fH).
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ABSTRACT

This paper presents a hybrid unit cell method to predict sound transmission and sound absorp-
tion properties of arbitrary two-dimensional periodic structures, combining the advantages of
the Wave Based Method and the Finite Element Method. The planar periodic structure, repre-
sented by its unit cell, is modelled by the Finite Element Method and the acoustic pressure field
in the semi-unbounded acoustic domains is represented using the Wave Based Method. The
Finite Element Method allows to include geometrical details and any combination of governing
physics in the unit cell. The Wave Based Method applies dedicated approximation functions that
inherently satisfy the acoustic Helmholtz equation, the Sommerfeld radiation condition and the
Bloch-Floquet periodicity conditions. The dynamic fields described within both frameworks are
coupled using a direct coupling strategy. The method is validated for an infinite porous plate,
modelled as an equivalent fluid, with periodic, rigid, circular inclusions and is shown to be a
promising tool for the analysis of complex periodic structures.
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1 INTRODUCTION

Lightweight designs are emerging to save material costs and to reduce the ecological footprint
of industrial products. Due to their decreased mass and retained stiffness, however, noise and
vibration isolation properties are impaired, with an impact on comfort and health. Periodi-
cally structured materials, such as resonant metamaterials and porous material with inclusions
are promising lightweight concepts to obtain improved low-frequency STL or absorption in a
dedicated frequency band.

The vibro-acoustic performance of periodic materials is classically predicted by cal-
culating dispersion curves, describing the wave propagation throughout the infinite periodic
medium, based on a representative unit cell (UC). By comparing these dispersion curves to the
dispersion curves of air, the influence on the acoustic radiation can be predicted by assessing
the occurrence of acoustic coincidence.

To predict actual levels for the acoustic transmission or absorption performance, numer-
ical simulation techniques are applied. Recently, the Transfer Matrix Method has been extended
with periodicity conditions [1]. This method is very effective, but breaks down when higher or-
der acoustic Bloch-Floquet modes have to be accounted for. The Wave Based Method (WBM)
[2] and the Multipole Method [3], allow the prediction of absorption, reflection and transmission
coefficients, however, yet only apply to relatively simple geometries.

To analyse the vibro-acoustic response of periodic materials consisting of arbitrarily
complex UCs, this paper proposes a hybrid Finite Element - Wave Based Method Unit Cell
model as an extension of the WBM [2], also towards three-dimensional applications. The dy-
namic fields within the bounded UC are modelled with the Finite Element Method (FEM),
allowing high geometrical flexibility and arbitrary subdomains. The acoustic pressure fields
inside the semi-unbounded acoustic domains are modelled with the WBM. Its approximation
functions are formulated to inherently fulfil the Helmholtz equation, the Bloch-Floquet period-
icity boundary conditions and the Sommerfeld radiation condition, not relying on any artificial
truncation or discretization of the domain, as would be required in a pure FEM setting. The
dynamic field variables of both methods are coupled at the interface, using a direct coupling
approach. The method is validated for numerous cases of which one is shown in this paper and
proves to be a powerful tool.

2 NUMERICAL MODEL

2.1 Mathematical problem description

An infinite, 2D periodic structure is considered, with spatial period L
x

and L
y

in the xy-plane,
coupled to one or two semi-unbounded acoustic domains, excited by an impinging acoustic
plane wave with wave number k

a

, incident at elevation ✓ and azimuth  . The periodic structure
may be built up of any combination of physical subdomains for vibro-acoustic analysis. Due
to the geometrical periodicity and the plane wave excitation, the resulting dynamic fields have
to be periodic in the x- and y-direction. By determining the dynamic field in a single reference
UC and applying the Bloch-Floquet periodicity boundary conditions, the dynamic field ⇣(x +
ML

x

, y + NL
y

, z) in any point at a distance of M and N UCs from the reference UC can be
obtained:

⇣(x + ML
x

, y + NL
y

, z) = ⇣(x, y, z)e�j(k
ax

NL

x

+k

ay

ML

y

), 8 M, N 2 Z, (1)

where k
ax

= �k
a

sin ✓ cos and k
ay

= �k
a

sin ✓ sin .
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2.2 Hybrid Wave Based-Finite Element UC model

To analyse periodic structures of arbitrary complexity, the FEM and WBM are applied in a
hybrid framework, combining best of both worlds for UC analysis. The FEM is used for the
approximation of the dynamic fields within the unit cell of the periodic material as it allows
high geometrical flexibility and any type of physics to be included. The WBM, on the other
hand, can directly account for the semi-unbounded, periodic acoustic domain(s).

2.2.1 Finite Element Method

The FEM discretizes the considered UC of the periodic material into nodes and elements and
approximates the field variables and the geometry by means of polynomial shape functions.
The system of equations is obtained by approximating the governing differential equations,
boundary and interface conditions via a weighted residual formulation, following a Galerkin
approach. A summary of the governing equations of poro-elastic, acoustic, porous and elastic
subdomains, their coupling conditions and possible boundary conditions can be found in [4].

2.2.2 Wave Based Method

The WBM, based on an indirect Trefftz approach, approximates the dynamic field variable(s)
by a weighted sum of wave functions, that inherently fulfil the governing acoustic Helmholtz
equation. The boundary conditions are approximated in a weak, integral sense. For this spe-
cific problem setting, to avoid integrations on infinite boundaries, semi-infinite, periodic wave
functions are selected, analogous to [2] but in 3D, such that not only the acoustic Helmholtz
equation is fulfilled, but also the Sommerfeld radiation condition and the Bloch-Floquet period-
icity boundary conditions. All boundary conditions are thus fulfilled, except the coupling with
the FE domain, which is discussed in section 2.2.3.

2.2.3 Hybrid coupling

The mutual interactions between the FE and WB dynamic field variables are directly introduced
into the weighted residual formulations of both models. In [4], the hybrid coupling strategies
and equations are presented for different kinds of physics in the FEM part and for acoustic
WBM domains and are now applied using the semi-unbounded periodic wave functions. A
hybrid system of equations is obtained, coupling the degrees of freedom from both models.

2.2.4 Solution and postprocessing

Bloch-Floquet boundary conditions are applied to the hybrid system of equations for each angle
and wave number of interest. The resulting system of equations is solved for the unknown nodal
degrees of freedom in the FE part and the wave function contribution factors in the WB part,
following a three-step procedure [4] in order to benefit from efficient solvers for sparse and
dense matrix systems. Similar to [2], the reflection, transmission and absorption coefficients of
the periodic structure can be obtained from the wave function contribution factors.

3 NUMERICAL VERIFICATION

To validate the hybrid UC model presented above, it is applied to analyse an infinite porous
material with periodically embedded rigid circular inclusions in a transmission context and its
results are compared to a WBM prediction. The geometry and material properties considered
are based on the transmission case presented in [2], extruding the geometry in the third direction,

3
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such that a cubic UC with edge length 0.02m is obtained. The mesh and the obtained reflection
and transmission coefficient are shown in Figure 1. The results obtained with the hybrid method
(3D simulations) are in excellent agreement with the results obtained using the Wave Based
Method (2D simulations), validating the procedure.

(a) Mesh.
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Figure 1: FE Mesh of the UC and obtained reflection and transmission coefficient under normal
incidence with the hybrid method and the WBM.

4 CONCLUDING REMARKS

In this work a hybrid WB-FE UC method is presented to analyze the reflection, transmission and
absorption coefficient of infinite, two-dimensional periodic structures of arbitrary complexity.
The method is verified by numerous validation cases of which one is presented in this paper. A
promising tool is obtained to support complex lightweight periodic structure design.
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ABSTRACT 
 
We present a lattice metamaterialinspired to the topology of Peano curves and defined by patterns 
of slits that follow a rotational symmetry (chiral) configuration. The chiral pattern of the slits 
creates a series of hinges by that produce deformation mechanisms for the lattice due to bending 
of the ribs. The metamaterial has a marginal negative Poisson’s ratio and an isotropic uniaxial 
stiffness. The chiral hinge lattice is almost one order of magnitude more compliant than other 
configurations with patterned slits and - contrary to other chiral Cosserat media - exhibits an in-
plane shear stiffness closer to the one prescribed by classical elasticity for elastic isotropic 
continua. The planar topology of the lattice is conducive to highly tailored phononic behavior, 
with bandgaps depending upon the slit to rib length ratios. When undergoing bending the global 
deformation of the lattice induce partial stick-slip interactions in the compressed cells that 
enhance the global damping behavior. We present a series of experimental and FE simulations 
that show the mechanical and vibroacoustics behavior of these peculiar mechanical metamaterials. 
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Fig1. Chiral lattice hinge plate and a unit cell with a rib/slit length ratio of 10  
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ABSTRACT 

 
Periodic structures can be used as mechanical filters in vibration control by creating destructive 
wave interferences to block the passage of propagating waves in certain frequency bands. Recently, 
researchers have been concentrating their effort to improve this phenomenon while creating more 
complex and adaptive structures. Nonetheless, there is still a lack of information about their 
behavior and parameters sensitivity to comprehend, for example, the effects of uncertainties. This 
study shows the use of analytical equations of spring-mass chains and their derivatives to compare 
the sensitivity of Bragg’s and resonance bandgaps. The objective is to inspect the behavior and the 
influence of changing stiffness and inertia properties on the attenuation zones borders. The transfer 
matrix method is used and a general formulation is adopted to model the unit cells. The propagation 
constants obtained by solving eigenvalue problems and the frequency responses are used to analyze 
infinite and finite chains, respectively. Analytical partial derivatives and finite differences are used 
to calculate the local sensitivity. The bandgap borders are found to be highly sensitive to the 
distance from localized modes and anti-resonances. The results from the comparison between these 
two kinds of attenuation zones are presented. 
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1 INTRODUCTION 

3HULRGLF�VWUXFWXUHV�DV�FKDLQ�RI�VSULQJ�PDVV�V\VWHPV�KDYH�EHHQ�VWXGLHG�VLQFH�1HZWRQ¶V�WLPHV�>�@��
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RI�SHULRGLF�VWUXFWXUHV��+RZHYHU��FRPSDULVRQV�EHWZHHQ�WKH�WZR�NQRZQ�EDQGJDSV�W\SHV��%UDJJ¶V�DQG�
UHVRQDQFH��DUH�VFDUFH��%DVHG�RQ�WKHVH�ZRUNV��EXW�ZLWK�D�GLIIHUHQW�IRUPXODWLRQ��WKH�SUHVHQW�ZRUN�
LQYHVWLJDWHV� ORFDO� VHQVLWLYLW\� RI� EDQGJDS� ERUGHUV� E\� YDU\LQJ� VWLIIQHVV� DQG� LQHUWLD� SURSHUWLHV�
FRQVLGHULQJ�LQILQLWH�DQG�ILQLWH�PRGHOV��$QDO\WLFDO�DQG�VHPL�DQDO\WLFDO�VROXWLRQV�DUH�XVHG�IRU�LQILQLWH�
�,0��DQG�ILQLWH��)0��PRGHOV��UHVSHFWLYHO\��
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OLPLWV� LV� ORVW� IRU� KLJK� GDPSLQJ� OHYHOV��7KH� DQDO\WLFDO� HTXDWLRQ� RI� WKH� ERUGHUV� FDQ�EH� IRXQG�E\�
FDOFXODWLQJ�WKH�HLJHQYDOXHV�RI�WKH�WUDQVIHU�PDWUL[�DQG�LPSRVLQJ�WKH�FRQGLWLRQ�RI�WUDQVLWLRQ�EHWZHHQ�
UHDO��G ��DQG�LPDJLQDU\��H ��SURSDJDWLRQ�FRQVWDQWV��)LJXUHV���G�DQG���I���8VLQJ�WKH�VDPH�WUDQVIHU�
PDWUL[��EXW�UHDUUDQJLQJ�WKH�'2)��WKH�IUHTXHQF\�UHVSRQVH�IXQFWLRQ��)5)��IRU�RQH�FHOO�FDQ�DOVR�EH�
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3 NUMERICAL E;AMPLE AND RESULTS 
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)LJXUH����9DU\LQJ�VSULQJ�DQG�PDVV�YDOXHV�DQG�WKHLU�DQDO\WLFDO�GHULYDWLYHV�IRU�D��60&��DQG�E��
60&���YDU\LQJ��VSHFLILHG�SDUDPHWHUV�IRU�F��60&���G��60&���H��60&��DQG�I��60&��ZLWK�
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WKH�VDPH�HIIHFW�LI�LW�LV�ORFDWHG�IDU�IURP�D�EDQGJDS�ERUGHU���

4 CONCLUSION 

$�VLPSOH�WUDQVIHU�PDWUL[�PRGHO�RI�D�JHQHUDO�VSULQJ�PDVV�FHOO�ZDV�XVHG��7KH�DQDO\WLFDO�VROXWLRQ�IRU�
EDQGJDS�ERUGHUV�RI�%UDJJ¶V�DQG�UHVRQDQFH�DWWHQXDWLRQ�]RQHV�ZHUH�SUHVHQWHG��7KH�ORFDO�VHQVLWLYH�
ZDV�IRXQG�DQDO\WLFDOO\�E\�FDOFXODWLQJ�WKH�GHULYDWLYH�DQG�QXPHULFDOO\�E\�XVLQJ�ILQLWH�GLIIHUHQFHV��
7KH�EHKDYLRXU�IRU�EDQGJDS�ERUGHUV�RI�%UDJJ¶V�DQG�UHVRQDQFH�DWWHQXDWLRQ�]RQHV�ZHUH�FRPSDUHG��
7KH�UHVRQDQFHV�LQVLGH�WKH�EDQGJDSV��DOVR�NQRZQ�DV�ORFDOL]HG�PRGHV��DQG�WKH�DQWL�UHVRQDQFHV�FDQ�
FKDQJH�WKH�YDOXH�IRU�D�EDQGJDS�ERUGHU�LQ�D�ILQLWH�PRGHO��
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ABSTRACT 
This paper investigates the vibroacoustic behavior of sandwich structures made of 2-
dimensionally gradient auxetic hexagonal core. Homogenized finite element model has been 
used to determine the mechanical properties of the auxetic structures. Then this model is used 
to find the natural frequencies and radiated sound power level of sandwich panels made by the 
auxetic gradient cores. The radiated sound power level of the structure over the frequency 
range of 0–200 Hz is minimized by modifying the core geometry of the 2- dimensionally gradient 
auxetic sandwich panels. To do the optimization, Genetic algorithm method has been applied 
establishing an interactive link between MATLAB and ANSYS software. The results of this 
research present significant insights into the design of auxetic structures with respect to their 
vibroacoustical properties 

   
 

Keywords: auxetic; hexagonal; 2-D gradient; sandwich panel; vibroacoustic; genetic algorithm 
optimization 
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1. INTRODUCTION 
      Honeycombs strcutures or hexagonal periodic cells have gained considerable attention in 
recent years as they possess outstanding out of plane mechanical properties [1].  Recently, a 
new types of honeycombs have been introduced which possess negative Poison's ratio [2]. In 
contrast to conventional materials, these materials called “auxetic”, expand in all direction 
when subjected to uniaxial loading [3]. One of the iconic examples of auxetic materials is the 
hexagonal center-symmetric re-entrant configuration.  They show an increase in the bending 
stiffness which can be useful in vibration[4]. Representative unit cells have been widely used 
to model mechanical properties of composite materials and sandwich structure [5]–[7]. Auxetic 
structure can also be considered as periodic repetition of the unit cell and their homogenized 
mechanical properties of the can be defined in terms of their geometrical parameters. 
As the application of the auxetic materials are widespread they have been used in various areas 
of research. Auxetic cellular structures have been used to prototype morphing wings [8]. In 
another work, the wave propagation in sandwich panels having periodic auxetic core was 
investigated [9]. The above cited micro-structure configurations tessellate periodically in the 
plane. Therefore, the cellular structure is made of cells having same geometry in any part of the 
structure. However, this cellular structure can be produced with a gradient configuration in 
which the structure is made of a continuous distribution of unit cells with compatible geometry 
but a single variable parameter like the internal cell angle [10]. Several researches have 
investigated vibrational and acoustic behavior of sandwich structures with normal or gradient 
cellular core [4]. More recently, Ranjbar et al. [10], studied the effect of geometrical parameters 
of a 1-dimensionally gradient auxetic core on radiated sound power level of sandwich panel 
structures.  
      In this study the effect of geometrical parameters for a 2-dimensionally gradient auxetic 
honeycomb core on the radiated sound power level will be investigated. Furthermore, genetic 
algorithm (GA) optimization will be applied to minimize the radiated sound power level from 
the sandwich structure. To do so, an interactive link between MATLAB and ANSYS software 
has been established.  
 
2. HOMOGENIZED  MECHANICAL PROPERTIES OF AUXETIC CORE 
      An analytical model has been used to calculate the mechanical properties of auxetic 
hexagonal honeycombs. This models which have been previously used by Gibson and Ashby 
[11] and Lira et al [12] defines mechanical properties of hexagonal honeycombs based on three 

non-dimensional parameters , ,
h t b
L L L

D E J    and the angle T . Figure 1.a., shows a 

representative unit cell of auxetic hexagonal honeycomb structure and its geometrical 
parameter. An orthotropic equivalent material have been used to model the mechanical 
properties of the honeycomb core plate. The compliance matrix [S] for an orthotropic material 
is defined, in which the engineering constants Ex, Ey, Ez, Gxy and Gxz can be found from Gibson 
and Ashby[11] or Lira et al [12]. Figure 1.b shows a 2-D gradient hexagonal cellular 
configuration. To generate the gradient core configuration, the unit cells with different internal 
angle T  have been assembled next to each other. The geometrical parameters of the original 
auxetic hexagonal unit cell have been shown in Table 1. 
 

Table1. Geometrical parameters of auxetic hexagonal sandwich plate 
 

h (mm)  l (mm) t (mm) b (mm) T (degree) 

33.55 17.02 1 20 -30 
 

195



MEDYNA 2017  25-27 Apr 2017, Sevilla (Spain) 

 

(a) (b)
Figure 1. a. A representative unit cell (RUC) of auxetic hexagonal honeycomb, b. 2-Dimensional 
hexagonal gradient core 
 

3. FE MODELLING OF AUXETIC HEXAGONAL SANDWICH PANEL 
      The FE modeling for the auxetic hexagonal honeycomb sandwich panel with constant angle 
cell distribution has been performed using the ANSYS Rel. 14.0 commercial FE analysis 
package. The geometrical parameters of the auxetic hexagonal honeycomb core are listed in 
Table 1. The core is covered with two 960×996×2 mm skins plates. Both core and skins are 
made of ABS plastic with elastic properties listed in [12].  
The homogenization of the sandwich panel is performed using shell elements to represent the 
skins, while the homogenized core of the auxetic hexagonal cells is represented by two solid 
element per gauge thickness. The mechanical properties of the skin are same as the mechanical 
properties of the ABS plastic and the mechanical properties of the homogenized core can be 
defined using the compliance matrix [S]. Figure 2.a. shows a full scale model of sandwich panel 
and Figure 2.b. demonstrates the homogenized single unit cell having a core and two skins. This 
homogenized unit cell is then reproduced along both x and y directions to make the sandwich 
panels with overall dimensions mentioned above.  
 

 

(a) (b) 
Figure 2, a. Full scale demonstration of the sandwich panel with auxetic hexagonal core, b. Finite 
element model of a homogenized auxetic sandwich panel unit cell.  
 

      To compare the behavior of full scale FE model with detailed geometry of the core detailed 
model and the homogenized model, a modal analysis have been performed. Simply supported 
boundary condition (SSBC) is considered for the modal analysis. The natural frequencies of 
both models have been shown in Table 2. The first six mode shapes in both full scale detailed 
and homogenized model are alike. Moreover, the natural frequencies find by homogenized 
model are in good agreement with the ones calculated by the full scale detailed model. 
     To do the harmonic analysis a pressure loading has been applied on the sandwich panel in z 
direction with frequency range of 0-200 Hz. Figure 3 shows the applied pressure and the 
distribution of nine different homogenized auxetic hexagonal unit cells with different angles(

1T , 2T , 3T , 4T , 5T , 6T , 7T , 8T , 9T ). The main objective is to minimize the radiated noise from the 
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panel. To do so, the geometry of model in each region will be modified to reduce the radiated 
sound power level.  
 

Table 2.  Modal Analysis result of the auxetic honeycomb sandwich panel on the frequency range of 0 
to 200 Hz for the homogenized and full scale FE models 
 

 Model type 1 2 3 4 5 6 

Frequency (Hz) Homogenized FE 37.75 94.73 98.35 143.13 187.90 193.85 
Full Scale FE 34.80 83.84 87.31 133.17 160.88 170.90 

 

      .  

 
 
 
 
 
 
 
 

 
 

Figure 3. Applied pressure on the homogenized FE model 
 

4. VIBRO-ACOUSTIC OPTIMIZATION OF THE SANDWICH PANEL 
      The minimization process of radiated sound power level over the frequency range of 0 to 
200 Hz is discussed in this section. The objective function for the optimization process is the 
root mean square level of radiated sound power level (RMSL) of sandwich panel. The design 
variables of this optimization problem are the angles of unit cells in the different regions. The 
methodology to calculate RMSL can be find in [10]. 
      The original design, is a non-gradient sandwich panel with core geometries given in Table1 
and skin thickness of 2mm. At first, the effect of change in the core thickness on the RMSL of 
the sandwich panel with a constant cell angle of -30o is evaluated. Figure 4 shows the change 
of RMSL with variation of thickness. The increase in the thickness makes a reduction in RMSL. 
The optimum thickness of 30 mm is identified.  

 
Figure 4. Variation of RMSL with respect to the 

core thickness 
Figure 5.Variation of RMSL versus generation as a 
result of GA optimization 

Next, nine different regions with nine different angles have been considered to compose the 
gradient sandwich plate. A fixed original value of 20 mm is considered for the core thickness. 
To do the optimization process Genetic algorithm optimization toolbox in MATLAB has been 
used. In order to have a better exploration of the feasible region of this optimization problem 
which has nine design variables and population size of 50, the first generation of genetic 
algorithm, has been created by Latin hypercube sampling (LHS) method. The objective function 
of this problem, the root mean square of radiated sound power level, then is minimized over 
100 generations. Figure 5 shows the variation of best and mean of the objective function in each 
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generation. After about 60 generation the objective function converges. The each function 
evaluation in this problem takes about 4.5 seconds and the total computation time was about 6 
hrs and 15 minutes.Table 3 shows detailed geometry, optimization variables and total mass of 
the sandwich panel for the original design and after genetic algorithm optimization design with 
original thickness of 20 mm. As it is clear in Table 3 the genetic algorithm reduced root mean 
square of sound power level which is objective function of this problem to 126.07 dB and the 
mass of sandwich structure after GA optimization has increased about 3.2%. 
 

Table 3. The optimization variables for the auxetic hexagonal sandwich panel 
Design Set 1T   2T  3T   4T   5T   6T  7T   8T   9T   RMSL 

(dB) 
Mass

( )Original 
Design 

-30 -30 -30 -30 -30 -30 -30 -30 -30 126.95 5.635 

GA Design -48.84 -48.61 -45.83 -33.93 -49.32 -49.66 -10.36 -10.59 -10.78 126.07 5.815 
 

      Figure 6 illustrates the radiated sound power level over the frequency range of 0-200 Hz, 
for the original design and GA optimized design sets. The figure clears that the first natural 
frequency for the optimum designs is not substantially changed, while for the 2nd and 5th natural 
frequency shifted to a lower value and for the 4th and 6th natural frequency in moved to a higher 
value. The 6th natural frequency for the optimized design shifted to a 206.51 Hz. Figure 7 shows, 
the radiated sound power level over the frequency range of 0-200 Hz for the original design, 
design with original angles and optimum thickness and the design with optimum angles and 
optimum thickness. The figure depicts that for the optimum thickness designs, the first natural 
frequency is increased by 38 % for the optimum thickness and angles. Besides, all other five 
natural frequencies are shifted to a higher value. For the optimum thickness and angles design 
just the first four natural frequency remained in the range 0-200 Hz and the 5th and 6th natural 
frequencies are shifted to 248.42 Hz and 273.86 Hz respectively.  
 

 

 

 

  

 

Figure 6. Effect of GA optimization methods on sound power level reduction 

 
 
 
 
 
 

 
 
 
 

Figure 7. Sound power level reduction for the optimum thickness designs 
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5. CONCLUSION 
This research has investigated the vibro-acoustic behavior of sandwich panels with 2-
dimensionally gradient auxetic hexagonal honeycomb core. First, to determine the mechanical 
properties, the natural frequencies and the radiated sound power level of the hexagonal 
honeycomb sandwich panels made by the 2-D gradient auxetic cores, a homogenized finite 
element modeling approach has been implemented. The geometrical parameters of the core 
have effect on the radiated sound power level. The radiated noise level of the structure is 
significantly dependent to the location of the excitations. Therefore, it is recommended to use 
the gradient core geometries to cover the excitations areas.  
For the optimization process an interactive link between MATLAB and ANSYS software was 
based. Genetic algorithm method has been used to optimize the root mean square of sound 
power level. The root mean square of radiated sound power level is reduced by about 1 dB. This 
reductions in RMSL is accompanied by an increase in total mass of the panel by 3.2 %. This 
designs behaves significantly better than the original design both in low and high frequency 
ranges. This feature could be considered for structures applications, in which weight reductions 
or control are paramount. 
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ABSTRACT

The vibration control of lightweight structures is nowadays a challenge of great industrial in-
terest because of obvious ecological and economical reasons. Among the possible strategies,
applying the concepts of metamaterials to the vibro-acoustics context seems to be promising.
It can be done by designing the structures as a periodic distribution of a unit cell. The overall
properties of such structures then result from a carefull design of the mechanical properties and
possible resonances of the unit cell. This work deals with beams made of uniform material and
with continuously graded flexural rigidity driven by variable thickness. The study focuses on
the first Bragg band gap of such structures by means of both theoretical and experimental ap-
proaches. Particularly, explicit relations linking the properties contrast with the band gap width
and central frequency are derived in an ideal case of a hollow beam without flanks for which
a PWE model can be analytically solved. The theoretical results obtained in this ideal case
succesfully match both the numerical results obtained from a PWE method and experimental
measurements.
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1 INTRODUCTION

From works of Brillouin on wave propagation in periodic media [1], meta-materials has been
widely studied during the last decades in many fields of physics. The typical effects obtained
with meta-materials can be exploited in three main categories of applications : wave filtering,
wave collimation and cloaking.

When applied to the context of vibro-acoustics, the case of flexural waves is of particular
interest when dealing with structure borne sound from shells or plates. Wave filtering effects can
then be very usefull to get non resonant and so non radiating structures without added mass in
given frequency bandwidths [2]. Then, providing general design rules of such meta-structures
is of great interest and still an open question [3]. For example, no explicit link between band
gap features and structure geometrical or material properties is well known.

As a preliminary work, the study of academic beams is often useful in order to apprehend
the practical and more complicated case of plates. In this work, the aim is to study how the
thickness contrast of a continuously varying periodic beam is driving the Bragg band gap central
frequency and bandwidth.

After defining a general PWE formalism of Euler beams in section 2, the ideal case of
a hollow rectangular beam is presented in section 3. Theoretical, numerical and experimental
results are then compared and discussed in section 4.

2 PWE GENERAL FORMALISM FOR AN EULER-BERNOULLI BEAM

Under Euler-Bernoulli assumtions and considering harmonic motion (ej!t), the free flexural dis-
placement w(x) in a beam of variable height h(x) and constant width b satisfies to the equation
of motion

�⇢h(x)!2w(x) +
@2

@x2

✓
D(x)

@2w(x)

@x2

◆
= 0, (1)

where ⇢h(x) is the surface mass with ⇢ the material volumic mass, D(x) =
Eh(x)3

12
is the

surface flexural rigidity with E = E0(1+ j⌘) the material complex young modulus in which E0

is the elastic constant and ⌘ is the loss factor.
According to the plane wave expansion method, the solutions of equation (1) are sought

as the following series
w(x) =

X

g1

w
g1(k)ejg1xejkx, (2)

with k a given flexural wavenumber, g1 =
n12⇡

L
with n1 an integer.

Considering the beam being a periodic distribution of a unit cell of size L, the mechani-
cal properties can be expanded as the following Fourier series :

⇢h(x) =
X

g2

↵
g2ejg2x and D(x) =

X

g2

�
g2ejg2x (3)

where ↵


=
1

L

R
L

0 ⇢h(x)e�jxdx, �


=
1

L

R
L

0 D(x)e�jxdx, and g2 =
n22⇡

L
with n2 an integer.

Truncating the Fourier series (3) with n2 2 [�N2; N2] and the plane wave expansion (2)
with n1 2 [�N1; N1], the equation of motion (1) turns to a matrix equation

(P (k) � !2Q)W = 0, (4)

where Wt is a [2N1 + 1 ⇥ 1] column vector, Q and P are [2N3 + 1 ⇥ 2N1 + 1] matrices with
N3 = N1 + N2 given by Q

n3n1 = ↵
g3�g1 and P (k)

n3n1 = �
g3�g1(k + g1)

2(k + g3)
2.

2
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3 ANALYTICAL DERIVATION OF THE FIRST BAND GAP WIDTH OF A HOLLOW
RECTANGULAR BEAM

An ideal geometry sketched in figure 1 is now defined in order to simplify the matrices in equa-
tion (4) and then analytically solve the problem. The goal is to obtain an algebraic expression of
the first Bragg band gap, defined as the difference between the two first eigenvalues at k = ⇡/L.

t

hmaxhmin

L

hc(x)x

Figure 1: Profile view of the unit cell geomtry of the modeled rectangular hollow beam with
no flanks. The constant width b is in the out-of-plane direction.

First, the beam cross-section is considered as a hollow rectangle where the lateral walls
have been removed. The thickness t and width b of both top and bottom walls are constant while
the cross-section height varies, as represented in figure 1.

Consequently, the surface mass ⇢h(x) = ⇢2t remains constant and so the property gra-
dient is only carried by the varying surface flexural rigity D(x) = Et

2 h2
c

(x) whith h
c

(x) the
central of both top and bottom wall.

Second, the spatial shape of beam unit cell profile is chosen as follows to make the
flexural rigidity proportional to a cosine fonction :

h
c

(x) = h0

s

1 + C.cos

✓
2⇡x

L

◆
=> D(x) =

Et

2
h2

0


1 + C.cos

✓
2⇡x

L

◆�
, (5)

where h0 =

q
h

2
max

+h

2
min

2 is the equivalent central height for a uniform beam (same cross-section
with constant height), and C is the so called contrast parameter defined as

C =
h2

max

� h2
min

h2
max

+ h2
min

. (6)

with h
max

and h
min

the maximum and minimum central height, respectively.

From this ideal geometry, the Fourier series in equations (3) for the surface mass and
flexural rigidity leave a single non zero term (N2 = 0) and only three non zero terms (N2 = 1),
respectively. Finally, it can be shown that the matrix problem (4) can be rewritten as a classical
eigenvalue problem with a tridiagonal matrix M = P (k) � !2Q for which the determinant can
be found from a recurence equation.

Assuming that the field plane wave expansion is truncated with N1 = 2 (compromise
between accuracy and convenience of analytical calculations) and after few algebra leading to
cancel the matrix determinant, the gap relative bandwidth and central frequency are found to be
only function of the thickness contrast C :

df

f0
⇡ C

2

✓
1 � C2/2

1 � 3C2/4

◆1/2

;
f

c

f0
⇡

✓
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1 � 3C2/4
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, (7)

whith f0 = ⇡
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2
0
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.
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4 RESULTS AND DISCUSSION

A thickness contrast variation is presented in figure 2. Figure 2(a) and 2(b) display the gap
relative bandwidth and central frequency, respectively. Equations (7) corresponding to the ideal
case of hollow beam with no flanks are plotted in dotted lines. The cases of the rectangu-
lar hollow beam (dashed lines) and fully filled rectangular beam (full line) are obtained from
numerical resolution of equation (4).
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Figure 2: (a) First Bragg band gap bandwidth and (b) central frequency versus contrast parame-
ter C shows no fundamental difference between cross-section geometries. Analytical results are
in agreement with full PWE numerical solutions and an experimental results of an aluminium
beam.

All results give same overall behavior : when the contrast increases, the gap is enlarged
and shifted to low frequencies. The sligth discrepancies between the results make the no flanks
assumption valid for giving a predictive analytical formula of the gap bandwidth of a fully filled
contrasted real beam.

An experimental validation has also been performed with an aluminium beam. The
beam geometry has been generated with a classical cutting machine. The relative gap width and
position are in agreement with both analytical and numerical computation (red circle in Fig. 2).

This work demonstrates, in the case of flexural unidimensional wave, how the first fre-
quency gap is fully characterized by a unique contrast parameter. Numerical simulation sug-
gests that the influence of the cross-section geometry is weak. Finally, analytical expressions of
gap bandwitdh and central frequency are derived and can be taken as benchmark for bandgap
design.
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ABSTRACT

The main aims of this paper are the description of the vibroacoustic response of a structure, in
particular a periodic structure, subjected to an aerodynamic excitation, the modelling optimiza-
tion and numerical models validation. A literature review on the response of simple structures,
1-D and 2-D, beams and panels, is reported. The state of the art in this research field and
the work plan are presented to give a complete overview of the project and of the expected
results.
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1 INTRODUCTION

Composite materials are largely used in aerospace industry, mainly due to their advantage of
being light and their ability to suit the particular demands of each structure type and manufac-
turer. On the other hand, these type of structure have poor acoustic performance, inducing high
level of noise transmission within the payload or passenger compartment.

The prediction of the vibroacoustic behaviour of composite structures, with the knowledge of
wave dispersion characteristics, is very important during the design process.
Depending on the nature of the material (isotropic or anisotropic, homogeneous or inhomoge-
neous), on the geometrical shape (beam, shell, panel with single or double curvature, cylinder,
cone) and on frequency range there are different methods to determine the wave dispersion
characteristics and to describe the structural dynamic response.

The vibrational modelling of coupled composite conical-cylindrical systems has been an area
of sporadic scientific research. In literature we can find everything about one dimensional prob-
lems and some simple examples about two dimensional structures, like plane or curved panels.
These problems are solved using different approaches, both numerical and experimental.

The scope of ESR-11 doctorate is to apply all these knowledge to conical and cylindrical com-
posite structures, in presence both of axial and/or circumferential ribs, and viscoelastic patches,
solving a fully three dimensional problem. In particular, the attention is focused on the SYLDA
(from French acronym of SYstéme de Lancement Double d’Ariane 5) structure of Ariane 5
launcher, as reported in Figure 1a.

(a) An illustration of Ariane 5 spacecraft. (b) A caption of the SYLDA mock-up
used for experimental manipulation.

Figure 1: SYLDA component.

2 LITERATURE REVIEW

In the last thirty years many authors have investigated the vibroacoustic behaviour of a structure;
in the first part, their attention was focused on one dimensional structures, of which we have

2
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analytical solutions. After that, they studied two dimensional structures, plane or curved panels,
made of metals or composite materials.
We can resume these works in the following manner:

• beam like structures;

• panel, both plane and curved;

• cylindrical and conical structures.

2.1 Beam like structures

When we have a one dimensional problem, in the Finite Element (FE) method we can consider
it as a beam like structure. For these kind of problems there are some semi-analytical solutions
to obtaining the dispersion curves [10]; other authors have predicted the energy flow using the
Wave FE (WFE) method [5].

2.2 Panel, both plane and curved

In the last years this is a very intensive field of research. There are both numerical (using FE
method of Statistical Energy Analysis (SEA)) and experimental solutions [2], [3], [7] and [8].

2.3 Cylindrical and conical structures

Cylindrical and conical structures are very complex, there are not analytical solutions; often
experimental and numerical results are not published by the industries. In literature we can find
some practical examples in [1], [9] and [10].

3 MAIN STEPS AND EXPECTED RESULTS

As said before, the main scope of this project is to apply all these knowledge to conical and
cylindrical composite structures solving a fully three dimensional problem.
There are three main steps:

1. effects of lateral periodic ribs properties on the vibroacoustic response of the SYLDA
under aerodynamic excitation. Modelling and optimization;

2. effects of circumferential ribs properties on the vibroacoustic response of the SYLDA
under aerodynamic excitation. Modelling and optimization;

3. effects of periodic viscoelastic patches on the vibroacoustic response of the SYLDA under
aerodynamic excitation. Modelling and optimization.

At the end, what we expect to obtain are some assessments of periodic design of the SYLDA
component performance, the validation of numerical tools and optimization under realistic con-
straints. An intermediate result is how the energy flows inside the structure [5].

To do these we start from the simplest case, in order to validate the numerical and experimental
tools, because of the poor results present in literature about conical and cylindrical structures,
mainly in presence of ribs and stringers (too hard or impossible to solve analytically and exper-
imental results covered by industrial intellectual properties).
After that, the starting point is the study made on the SYLDA component mock-up [1], which

3
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consists only in the conical and cylindrical structure (Figure 1b), without ribs and stringers.
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ABSTRACT

Structural waveguides involving heterogeneous cross-sections or based on periodic patterns are
often subjected to wave conversion phenomena. This paper is concerned with a specific type
of conversion observed in sandwich structures called bending-to-shear conversion. It occurs
in the ”transition” bandwidth, where the flexural wave is partially localized in the core of the
sandwich, hence mainly governed by its shear modulus. This conversion has consequences
on the wave reflection characteristics through a defect’s interface. The need for wave-based
Structural Health Monitoring strategies providing sub-wavelength detection capabilities has
been increasing with the development of advanced, often periodic lightweight components. It
is therefore advantageous to predict and take into account conversion effects at the earliest
design stage of SHM systems. This paper explores the consequences of such conversions on
the reflection coefficient of flexural guided waves in lightweight structures. A Diffusion Matrix
Method (DMM) is employed to estimate the diffusion of guided waves obtained using refined
unit-cell FE models. Case-study is a composite sandwich waveguide with honeycomb core.
Results show significant variations of the wave’s sensitivity to small-scaled core defects and
delaminations during the conversion process.
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1 INTRODUCTION

Sandwich composites are widely use in aerospace and transportation industries. Their main
advantage, apart from their exceptional strength-to-weight ratio, is their wide range of possi-
ble configurations. The variety of sandwich panels involving innovative core’s geometries or
skin laminates developed every year illustrates this growing interest in the design of structurally
advanced lightweight components. Wave-based inspection techniques are usually exploiting
Lamb waves for their ability to travel long distances with low attenuation and their predictable
dispersion curves. Yet, wave conversions are commonly encountered in heterogeneous struc-
tures, especially at high frequencies. Literature is abundant with examples of wave conversion,
steering or localisation effects appearing in sandwich structures. Recently, Putkis et al. [1] in-
vestigated the influence of various Lamb waves conversions in CFRP plates for practical NDE
and SHM applications. Indeed, this phenomenon produces a modification of the strain energy
distribution along the waveguide’s cross-section, or in its unit-cell when the waveguide is based
on a periodic pattern. For such structures, the Wave Finite Element Method (WFEM) is often
used to perform broadband wave dispersion analyses and understand wave’s physics in complex
periodic waveguides.

The proposed study focuses on a phenomenon occurring in the so-called first transition
bandwidth [2, 3], which is a specific type of wave conversion appearing in sandwich structures
subjected to flexural vibrations. It usually occurs in the low- or medium-frequency range, where
local resonances and Bragg scattering effects are not observed. This conversion can easily be
determined from the dispersion curves, as the passage from a behavior where flexural wave is
governed by the skins’ stiffness to one governed by the core’s transverse shear. The correlation
between this conversion process and the sensitivity to localized defects can therefore be con-
ducted using a spectral diffusion analysis based on a FEM description of the interface between
the healthy and damaged waveguides.

2 DIFFUSION MATRIX METHOD

The waveguide is considered as a straight elastic structure made of N identical substructures
of same length along the main direction x. The wave dispersion characteristics can be derived
from Bloch’s theorem, denoting � the propagation constant relating the displacements q

n

, q
n+1

between two cells, by solving the spectral problem:

S(�, !) = (�D
LR

+ (D
LL

+ D
RR

) +
1

�
D

RL

)q
n

= 0, (1)

where D
ij

are the dynamic stiffness matrices related to the left and right degrees of freedom of
the unit cell’s governing equation. The displacement q

n

of any substructure n can be written
q
n

= �Q
n

using the wave solutions of Eq.(1), where the incident ’inc’ and reflected ’ref’
wave amplitudes can be distinguished Q

n

=
⇥
(Qinc
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)T , (Qref
n

)T
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T and the wave components are

written:
� =


�inc
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�inc
F

�ref
F

�
, (2)

The coupling element describing the junction between the healthy (1) and damaged (2)
waveguides is described using a classical FEM, as shown in Figure 1. The reflection coefficient
is derived from the dynamic equation of the condensed coupling element Dc, resulting in the
following scattering problem:

✓
Qref (1)

Qref (2)

◆
= C

✓
Qinc (1)

Qinc (2)

◆
(3)
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Figure 1. Description of the FEM/WFEM coupling problem for the diffusion analysis.

where C is the diffusion matrix written:
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The incident wave is a first-order flexural wavetype i with normalized amplitude along
the positive x-direction in waveguide (1) and the coefficient considered in matrix C corresponds
to the i ! i reflection, while the converted wavetypes i ! j 6= i are not taken into account.
A recent discussion of the definition of the reflection and transmission coefficients provided by
the DMM can be found in [4].

3 REFLECTION OF FLEXURAL WAVE DUE TO CORE DEFECTS

The sandwich structure involves composite skins of thickness h
s

= 0.5 mm, density ⇢
s

= 1451
and tensile modulus E

s

= 45 GPa while the core is an homogeneous honeycomb medium of
thickness h

c

= 15 mm, density ⇢
c

= 35 and equivalent shear modulus G
c

= 80 MPa. Poisson
ratio is ⌫ = 0.35 and the unit-cell dimensions are d

x

= d
y

= 1 mm. The defect is defined by a
vertical location z0 = 8 mm in the core, a thickness e. It is modelled as a reduced core’s stiffness
at the defect’s location: G̃ = G/r. The transition frequencies are defined as the local maximum
and minimum of the group velocity. These frequencies are used to defined the bandwidth where
shear motion is the predominant behaviour.

Different damage severities defined by the value of e are compared in Figure 2.a. It
shows a clear increase of the reflection coefficient between the two transitions, while the max-
imal amplitude of the reflection increases as expected with the damage thickness. Noteworthy,
for the largest defect, the maximum reflection is twice the value of the minimum reflection in
the bandwidth [2!

T

, 6!
T

]. The influence of the damage severity, defined using the reduction
coefficient r is shown in Figure 2.b, where reflection coefficients are normalized to their max-
imum in the transition bandwidth. A similar phenomena can be observed since the maximum
reflection is shifted from the second transition to the first as the defect severity increases. Re-
sults also indicate the expected reduction of the reflection above the second transition, which
corresponds to wave localization in the skins. Higher sensitivities will therefore be obtained for
crack and other skin’s damages.
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4 CONCLUSIONS

A local increase of the flexural wave reflection coefficient was identified within the transition
bandwidth, associated with a bending-to-shear conversion. This result was found for different
types of sandwich configurations, and is consistent with other investigations describing a partial
localisation of strain energy within the transition bandwidth. It is emphasized that higher fre-
quencies will always yield increased sensitivity due to wavelength reduction, but are therefore
subjected to significant spatial attenuation and may exhibit complex scattering effects due to
the periodicity of the waveguide. It is also mentioned that reflection coefficients are used in this
study, since the transmission cannot be defined as such between two different waveguides.
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Figure 2: (a) Influence of the defect thickness on the reflection (r = 10). (b) Effect of the
damage severity on the local maximum of the reflection (e = 1 mm).
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ABSTRACT

Dynamical Energy Analysis (DEA) in the form of Discrete Flow Mapping (DFM) is a fairly new
mesh-based method for numerically modelling structure borne sound transmission in complex
structures. A key feature is the possibility to work directly on existing finite element (FE) meshes
avoiding time-consuming and costly re-modelling. Furthermore, DFM provides detailed spatial
information about the vibrational energy distribution within a complex structure in the mid-to-
high frequency range. In this work we will illustrate the method using a car floor structure
which consists of a big panel and several rails connected by spot welds modeled in FE through
Rigid Body Elements (RBE).
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1 INTRODUCTION

Simulations of the vibro-acoustic properties of complex structures (such as cars, ships, air-
planes, etc.) are routinely carried out in various design stages. For low frequencies, the estab-
lished method of choice is the finite element method (FEM). But high frequency analysis using
FEM requires extremely fine meshes of the body structure to capture the shorter wavelengths
and is therefore computationally very costly. Furthermore the structural response at high fre-
quencies is very sensitive to small variations in material properties, boundary conditions etc.
This makes the output of a single FEM calculation less reliable and makes ensemble averages
necessary furthermore enhancing computational cost. Therefore at high frequencies other nu-
merical methods with better computational efficiency are preferable.

The Statistical Energy Analysis (SEA) [1] has been developed to deal with high fre-
quency problems and leads to relatively small and simple models. However, SEA is based
on a set of often hard to verify assumptions, which effectively require diffuse wave fields and
quasi-equilibrium of wave energy within (weakly coupled and weakly damped) sub-systems.

One alternative to SEA is to instead consider the original vibrational wave problem
in the high frequency limit, leading to a ray tracing model of the structural vibrations. The
tracking of individual rays across multiple reflection is not computational feasible because of the
proliferation of trajectories. Instead, a better approach is tracking densities of rays propagated
by a transfer operator. This forms the basis of the Dynamical Energy Analysis (DEA) method
introduced in [2]. DEA can be seen as an improvement over SEA where one lifts the diffusive
field and the well separated subsystem assumption. One uses an energy density which depends
both on position and momentum. DEA can work with relatively fine meshes where energy can
flow freely between neighboring mesh cells. No remodeling as for SEA is necessary as DEA
can use meshes created for a FE analysis. Also finer structural details than SEA can be resolved.

In this paper, we apply the DEA method to a caravan car floor structure. The floor
structure consists of a floor panel, two longitudinal rails and six transverse rails, all built up
from 2D plate elements, as illustrated in Fig. 1. The floor panel is connected to the rails through
a number of spot-welds. First we discuss details of DEA itself and then we we present numerical
results comparing DEA with FEM calculations.

(a) (b)

Figure 1: (a) car floor
and (b) spotweld. The
spotweld is modelled
through RBEs (red) and
a small solid element
(yellow) in the middle.

2 DYNAMICAL ENERGY ANALYSIS / DISCRETE FLOW MAPPING

The implementation of DEA on meshes is called Discrete Flow Mapping (DFM). We will here
briefly describe the idea behind DFM, for details see [3]. In DFM it is possible to compute vibro-
acoustic energy densities in complex structures at high frequencies, including multi-modal prop-
agation and curved surfaces. DFM is a mesh based technique where a transfer operator is used
to describe the flow of energy through boundaries of subsystems of the structure; the energy
flow is represented in terms of a density of rays ⇢, that is, the energy flux through a given sur-
face is given through the density of rays passing through the surface at point s with direction
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p. Here, s parametrises the surface and p is the direction component tangential to the surface.
In what follows, the surfaces is represented by the union of all boundaries of the mesh cells of
the FE mesh describing the car floor. The density ⇢(s, p) = ⇢(X

s

), with phase space coordi-
nate X

s

= (s, p), is transported from one boundary to the next boundary intersection via the
boundary integral operator [3]

B[⇢](X 0
s

) :=

Z
w(X 0

s

)�(X 0
s

� �(X
s

))⇢(X
s

) dX
s

(1)

where �(X
s

) is the map determining where a ray starting on a boundary segment at point s
with direction p

s

passes through another boundary segment, and w(X
s

) is a factor containing
damping and reflection/transmission coefficients (akin to the coupling loss factors in SEA). It
also governs the mode conversion probabilities in the case of both in-plane and flexural waves,
which are derived from wave scattering theory [4].

In a next step, the transfer operator (1) is discretised using a set of basis functions of the
phase space. Once the matrix B has been constructed, the final energy density ⇢ on the boundary
phase-space of each element is given in terms of the initial density ⇢0 by the solution of a linear
system of the form

(1 � B)⇢ = ⇢0. (2)

The integral in (1) can be adapted to incorporate further complexity and refinement in a DFM
model. The vehicle floor in Fig. 1 contains spot welds fixing the stiff rails to the floor panel.
This is modelled in the FE model with the connections shown in Fig. 1b, here in terms of a
set of RBEs (red lines) together with solid element modelling extra mass and stiffness of the
spot weld. The RBEs describe here constraint conditions and make it possible to transfer forces
directly from one mesh to another. Such a set-up can not be used in a DFM treatment which is
based on modelling energy flow through surfaces and mesh boundaries.

In order to avoid costly remodelling of the structure, in DFM we describe the energy
transfer across spot weld by introducing coupling elements between edges connected to the
spot welds both in the ’upper’ and ’lower’ sheet. Energy arriving at an edge connected to a spot
weld is distributed uniformly (also in direction) among all neighbouring edges.

3 NUMERICAL RESULTS

In order to compare the different numerical approaches, first we have calculated the spatial
kinetic energy distribution originating from a single (perpendicular) point excitation on the plain
floor panel without rails (shown as component 9 in Fig. 1a). The DFM results are compared
to one-third octave band frequency-averaged FEM results, with the band average at 2500 Hz.
Note that the DFM calculation uses only the band average frequency. The calculation uses a
hysteretic damping loss factor of ⌘ = 0.04.

The results are shown in Fig. 2a. The energy distribution predicted by FEM and DFM is
very non-uniform and would not be well-captured by an SEA model. In contrast to SEA, DFM
gives also the spatial distribution information, which is in close agreement with the FEM results.
In particular, we see the directional dependence of the energy flow, which is predominantly in
the horizontal direction as plotted. This is caused by several horizontally extended out-of-plane
bulges. It is only in the lower right part of the panel, with negligible energy content, that
deviations between the FEM and DFM predictions are visible. The results also show a good
quantitative agreement. In particular, the total kinetic energy given by the DFM prediction is
within 12% of the FEM prediction.

In a next step, we calculate the response of the full car floor model shown in Fig. 1a. This
includes the coupling of the rails to the floor panel and between different rails via the spot-weld

3
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(a) (b)

Figure 2: The kinetic energy distribution on a logarithmic color scale ((b) shifted by 5 dB relatively

to (a)). The (frequency averaged) FEM results (upper panels) are compared to DEA results (lower
panels). The left panels (a) show the bare floor panel, the right panels (b) show the full structure
including rails.

models depicted in Fig. 1b. The point loading is now applied on top of a rail, but otherwise
the scenario is equivalent to the previous calculation. The results are shown in Fig. 2b. The
deviations between the FE result and the DEA result are within 18% when integrated over the
total area of the car floor. A detailed analysis shows, that the energy is less pronounced in the
DEA calculation compared to the FE calculation when moving away from the source. This
suggest that the modelling of the coupling between different components is currently too weak
in the DEA model, which calls for a more refined DEA modelling of the RBE connections.

4 CONCLUDING REMARKS

We have tested the DFM method for a car-floor structure at mid- and high- frequencies. The
combination of the thin shell floor panel connected to a number of stiffer rails via spot welds
poses challenges for a DFM calculations. We have developed a method for treating the cou-
pling of different FE meshes via RBEs in a DFM simulation. The results compare well with
(frequency-band averaged) FE calculations both for the floor panel alone and for the full car
floor structure. Improvements of the coupling in the DEA set-up needs to be considered.
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ABSTRACT 
 

Defect detection based on the processing of ultrasonic signals using the MUSIC algorithm is a 
recent subject of research. This paper suggests to make use of the sub-wavelength detection 
accuracy that can be achieved with the MUSIC algorithm to lower the testing frequency. This 
allows the application of the detection strategy to periodic and heterogeneous materials, such as 
honeycomb structures, where defect detection at higher frequencies becomes difficult, due to the 
complex scattering behavior. Furthermore the sound radiated from the structure in the surrounding 
air can be picked up with microphones to replace structural sensors, with the consequence that 
coupling problems between structure and sensors, e.g. due to badly glued sensors, are avoided 
automatically and the time for setting up the measurement is reduced. In this paper, it is 
demonstrated using the example of an A3 Aluminum plate radiating in a half space that the 
detection accuracy of a vibro-acoustic test-setup (excitation: structural, sensor: microphone) is 
equal to that of a purely structural measurement (excitation: structural, sensor: structural). 
 
 

216



MEDYNA 2017  25-27 Apr 2017, Sevilla (Spain) 
 

 

2 

 

1 INTRODUCTION 

A commonly used method in the field of ultrasonic nondestructive testing (NDT) is defect detection 
based on ultrasonic waves. More recently, the combination of ultrasonic waves with the concept of 
time-reversal (TR) was introduced to NDT [1]. One sub-group of TR methods is the so called TR-
MUSIC algorithm, where MUSIC stands for MUltiple SIgnal Classification. This technique proved 
to be very robust to measurement noise and reaches an imaging resolution that is significantly 
smaller than the wavelength [2, 3]. 

The latter feature allows to lower the testing frequency, while still being able to generate an 
accurate image of the defect location. This comes with the downside of a reduced interaction 
between incident wave and defect. On the other hand, e.g. in case of periodic structures 
characterized by the repetition of a unit cell (UC), ultrasonic waves can significantly scattered at 
the boundaries of the UC and therefore in these cases be problematic for defect detection of the 
entire structure. At lower frequencies, and thus larger wavelength, the scattering at the boundaries 
of the UC decreases, which is why waves in this frequency range, then can be employed to globally 
monitor the health status. 

Furthermore, lowering the frequency enables to measure the radiation of structural 
vibrations in the surrounding air, which would not be possible at higher frequencies due to the 
stronger damping for a given distance of propagation. The advantage of employing microphones 
instead of structural sensors are versatile. E.g., one consequence is that no sensors need to be 
attached to the structure, which automatically avoids problems with the coupling. Furthermore, it  
avoids wave scattering at the sensors and saves time.  

This paper provides a numerical study with the focus to determine the ability to use the 
radiation of structural vibrations in the surrounding air for the detection of a small defect (small as 
compared to the wavelength). 

2 MUSIC IMAGING 

The MUSIC algorithm is based on the idea to decompose the so called multi-static data matrix 𝑲 
in components belonging to a signal space and components belonging to a noise space. In a 
mechanical system the elements of 𝑲 at one discrete frequency are  

, , , , , ,m n D m n l m nk k k �   (1) 

with 𝑘∙,𝑚,𝑛 the transfer function from the n-th point of excitation to the m-th measurement point in 
the defected (subscript D) and the intact (subscript I) structure, respectively. The transfer path can 
be purely structural or vibro-acoustic. 

The decomposition of 𝑲 is done by means of a singular value decomposition 

,H
E S K G VG  (2) 

where 𝑮𝐸 = [𝒈𝐸,1, 𝒈𝐸,2, … , 𝒈𝐸,𝑁] and 𝑮𝑆 = [𝒈𝑆,1, 𝒈𝑆,2, … , 𝒈𝑆,𝑀] are matrices containing the left 
and right hand side singular vectors, 𝑽 is the matrix of the singular values and the superscript H 
denotes the complex conjugate transpose. 𝑮𝐸 and 𝑮𝑆 are 𝑁 × 𝑁 and 𝑀 × 𝑀 matrices, where N is 
the number of excitation points and M is the number of sensors. Throughout the paper quantities 
referring to the excitation are indicated with subscript E, those referring to sensors with subscript S. 

𝑽 contains P singular values corresponding to the signal space and min(𝑀, 𝑁) − 𝑃 singular 
values corresponding to the noise space. According to this definition 𝑮𝐸 can be split in a part 
corresponding to the signal space with singular vectors 𝒈𝐸,𝑖≤𝑃 and a part corresponding to the noise 
space with singular vectors 𝒈𝐸,𝑖>𝑃. The choice of P is done as suggested in [4].  
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For the case of point scatterers under the Born approximation, P is equal to the number of 
scatterers. Following He and Yuan [3], for this case, due to the orthogonality of the singular values, 
the scalar product between 𝒈𝐸,𝑖≤𝑃 and a vector containing the transfer functions from the points of 
excitation to an arbitrary point x in the intact structure, 𝒌𝐼,𝐸(𝑥) is 0 only if x is not equal to the 
location of the defect xi. Making use of the orthogonality between signal and noise space, this 
property can be used to calculate an image function, which peaks at all locations 𝑥 = 𝑥𝑖 

� �
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(3) 

 The theory can also be extended to scatterers with finite extent, with the outcome that 𝐼(𝑥) 
reaches its maximum at the location of the scatterers. The principle of imaging remains unchanged. 

3 NUMERICAL ANLAYSIS 

In this section the above described theory is applied to a simply supported A3 Aluminum plate  
(𝐸 = 7 ∙ 1010 N/m2, 𝜌 = 2700 kg/m3, 𝜈 = 0.3, structural damping coefficient = 5 ∙ 10−4) of 
2mm thickness radiating in a half space filled with air. A square damage of 3mm x 3mm is assumed, 
which is modelled by removing one element. The plate is excited at 8000Hz, which results in a 
wavelength of 49mm. The mesh is composed of linear 2D elements with an edge length of 3mm. 

3.1 Imaging based on structural vibration 

At first the location of the defect is searched based on Equation (3) with randomly chosen 27  
structural excitation points. The out-of-plane displacement of the plate is calculated at 27 arbitrarily 
chosen locations, which serve as virtual sensors. P is chosen as 9, following [4]. 

  
Figure 1. Purely structural imaging result (𝐼(𝑥)) of Equation 3 for the entire plate (left) and zoom 
to the defected region (right). Deleted element is indicated with black square in the right figure. 

 
As can be seen from Figure 1, the maximum of the image index is shown at the top right 

corner of the defect. Furthermore it is evident that the region of the defect and its direct vicinity is 
clearly separated form the undefected regions of the plate. Assuming a possible defect in the region 
around the maximum, until the amplitude is lowered by a factor 10, gives a circle of roughly 20mm 
diameter, which proves that defects can be located with a sub-half-wavelength accuracy. 

3.2 Imaging based on vibro-acoustic measurement 

In this section the imaging is done based on the same equation with the same 27 structural excitation 
points already used in the previous section. As opposed to section 3.1, now only microphone 
measurements (pressure) are used for the imaging. The 27 (equal to the number of structural sensors 
in 3.1) microphones are located at randomly chosen points on a half-sphere with 620mm diameter 
and the center coinciding with the center of the plate. Also in this case P is chosen equal to 9. 
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Figure 2. Vibro-acoustic imaging result (𝐼(𝑥)) of Equation 3 for the entire plate (left) and zoom to 

the defected region (right). Deleted element is indicated with black square in the right Figure. 
 
 As in Figure 1, also in the case of vibro-acoustic imaging (Figure 2), the maximum of the 
image index is located at the top right corner of the defect. Although the maximum in Figure 2 is 
more extreme than that in Figure 1, the area of a possible defect in the vibro-acoustic case is even 
smaller than it is in the purely structural case.  
 Further numerical simulations illustrate that the number of measurement and excitation 
points in both cases can be reduced to P+1 without a significant loss of detection accuracy. Also 
the stability of the algorithm at the presence of random measurement errors, which is reported in 
literature, can be observed, as will be shown at the conference presentation. 

4 CONCLUDING REMARKS 

As a numerical example, it is shown that the MUSIC algorithm can be used for the detection of a 
defect in a structure, while only microphone measurements are used. The comparison between a 
purely structural and a vibro-acoustic case suggests that the detection accuracy due to the vibro-
acoustic measurement does not decrease. In both cases the location of a defect can be narrowed 
down to an area significantly smaller than the structural wavelength at the excitation frequency.  
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ABSTRACT

Dynamical Energy Analysis (DEA) is a mesh-based high frequency method modelling structure
borne sound for complex built-up structures. Vibro-acoustic simulations are done directly on
finite element meshes circumventing re-modelling strategies. DEA provides detailed spatial
information about the vibrational energy distribution within a complex structure in the mid-to-
high frequency range. We will present here progress in the development of the DEA method
towards handling complex FEM-meshes including Rigid Body Elements and sound radiation.
The results for simulations are compared to measurements on a tractor model provided by
Yanmar Co, Ltd both for structure borne vibrations and sound pressure levels (SPL) inside
the cabin. For the latter, a combined DEA/SEA analysis has been developed. The simulation
results compare favourably with measurement results both for vibration levels measured across
the structure and SPLs inside the cabin.
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1 INTRODUCTION

A major difficulty in modelling structure-borne sound lies in the complex geometry of the
structures. The Finite Element Method (FEM) can describe geometric details with sufficient
accuracy in the low frequency region, but requires extremely fine meshes at high frequencies to
capture the shorter wavelengths. Statistical representations such as the Statistical Energy Analy-
sis (SEA) [1] have been developed leading to relatively small and simple models in comparison
with FEM. A range of methods have been proposed to extend the range of SEA such as the
hybrid FEM/SEA method [2–4]. An alternative to SEA is ray-tracing in terms of integral equa-
tions leading to linear flow equations for the mean vibrational energy density; this forms the
basis of the Dynamical Energy Analysis (DEA) method introduced in [5]. DEA includes SEA
as special case via a low order representation of the transfer operator. Higher order implemen-
tations enrich the DEA model with information from the underlying ray dynamics, leading to a
relaxation of SEA assumptions. In particular, DEA allows for more freedom in sub-structuring
the total system and variations of the energy density across sub-structures can be modelled [6].
An efficient implementation of DEA on meshes has been presented in [6, 7]. Vibro-acoustic
energy densities including multi-modal propagation and energy transport over curved surfaces
is computed and coupling at material interfaces is described in terms of reflection/transmission
matrices. Thus, DEA resolves the full geometrical complexity of the structure.

In this paper, we apply the DEA method to modelling a tractor model (cabin including
windows and doors mounted on a chassis) as well as the SPL inside the cabin and compare
with detailed measurements done across the structure. We focus here in particular on how
to implement DEA in the presence of Rigid Body Elements (RBEs) or similar FE coupling
methods. We will furthermore introduce a DEA/SEA method for determining the acoustical
response inside the cabin.

2 THE TRACTOR MODEL AND THE SET-UP FOR VIBRO-ACOUSTIC MEASURE-
MENTS

The tractor model under consideration has been provided by Yanmar Co, Ltd and is a stripped
down version of a tractor of the EG400 series. The tractor body consists of a chassis frame and
a cabin - the latter includes doors and windows - often referred to as a ’body-in-blue’ (BiB).
The chassis frame consists of the gear casing and a front frame. The cabin is mounted onto the
chassis by four rubber mounts; the actual structure together with an FEM model is depicted in
Fig. 1. In the FE model, the rubber mounts are treated as spring elements - so-called CELAS1
elements. Rubber material and glue (such as for describing the fixture of windows, doors and
the roof) are modelled with rigid body elements (RBE), mostly of the RBE3 type. The coupling

(a)

Input

Front glass

Front frame

Front cabin mountRear cabin mount

Back side

(b)

Figure 1: (a) the tractor parts under consideration and (b) the corresponding FEM model of the
tractor including the accelerometer positions across the structure (blue dots, 44 points in total).
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elements provide a connection over which energy can be transferred. The chassis frame is
supported by rubber mounts as free-free condition. The excitation is at the rear side of the
gear casing. Excitation is applied using a modal shaker in a frequency range between 400Hz to
4000Hz. The sound pressure at the operator’s ear location is measured with a microphone. In
addition, the acceleration of the structure is measured at 29 points on the cabin and at 13 points
on the chassis frame using an accelerometer. The acceleration on the upper and lower sides
of each cabin mount are also measured giving valuable information about the coupling via the
rubber mounts. Fig. 1b shows the location of the measurement points (blue dots).

3 DEA ON COMPLEX MESHES AND A DEA/SEA HYBRID TREATMENT

In the following we will focus on DEA on 2D meshes [7] and describe the modelling of connec-
tions between different meshes via RBE’s such as used in the tractor model. DEA is a technique
for determining the flow of (vibrational) energy through a structure in terms of a transfer op-
erator defined on boundaries of subsystems of the structure, here the boundaries of the mesh
elements. Mode conversion between in-plane and flexural waves at boundaries are included in
the treatment, the reflection/transmission coefficients are obtained from wave scattering theory
[8]. Shell effects leading to curved rays [9] are included by treating the meshed structure as a
set of plate-like elements, see [6, 7] for details. Once the ray density ⇢ has been computed, the
energy density at any location inside the structure may be obtained in a post-processing step as
described below.

The FE model of the tractor structure shown in Fig. 1b is made up of different sub-
meshes; these sub-meshes are connected via special FE elements, RBEs, at, for example, glass-
metal interfaces, at the sidewall-roof interfaces or for connecting the doors to the cabin frame.
We treat RBEs as DEA coupling elements directly. To describe the energy transfer across non-
compatible meshes we introduce coupling between edges connected to the mesh cells next to
the RBEs both in the ’upper’ and ’lower’ sheet connected by the RBE. Incoming ray-densities
at one side of the RBE-interface are now mapped onto the other side of the interface via a
probability density function in phase space (position on each edge and ray directions).

The sound pressure level (SPL) inside the cabin and in particular at the position of the
driver’s ear can be computed from the vibration levels obtained in the DEA computation. To
do so, we identify the main panels of the cabin, determine the mean velocity v

i

on each panel i
with mass M

i

from the DEA analysis and determine the input power P
i

radiated off each plate

Figure 2: DEA results for the acceleration (given here in mm/s2) at a frequency of 1000 Hz.
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Figure 3: Comparison of Simulation and Measurement results at 1000 Hz.

using the relation

P
i

= !(⌘
i

+ ⌘d

i

)M
i

< v2
i

>, ⌘
i

=
Z0Ai

�
rad

!M
i

(1)

Here, A
i

is the area of plate i, ⌘
i

is the coupling loss factor between panel i and the
interior volume and ⌘d

i

is the loss factor due to dissipation in panel i. (We assume ⌘d

i

= 0.5%
and ⌘d

V

= 1.5% for the interior volume). Furthermore Z0 is the acoustic impedance and �
rad

is the radiation efficiency, here for rectangular plates in the approximation derived in [10]. The
DEA result enters through the mean velocity < v2

i

> averaged over each of the panels.

4 RESULTS

We performed DEA calculations for the full structure shown in Fig. 1b in the frequency range
400 Hz – 10 kHz. The results are compared to experimental data obtained from measurements
done by Yanmar for the input powers specified. In all calculations, a hysteretic damping level of
0.005 is assumed. The acceleration of surface points are measured in mm/s2. Fig. 2 shows the
outcome of the DEA calculation on the FEM mesh at 1000 Hz. Most of the vibrational energy
remains near the source (rear end of the chassis) and in the chassis itself. The cabin shows less
excitation which in addition decreases with the distance to the source. A point-by-point compar-
ison with the measurement results can be found in Fig. 3. Overall, the simulation captures the
energy distribution across the whole structure remarkably well despite the simplifying assump-
tions for the RBE coupling and the cabin mounts. We have also conducted SPL calculations at
the driver’s ear position following the approach sketched in Sec. 3. The results are summarised
in Fig. 4. We note large variations in both the experimental data and the simulations, but the
overall range (between 45 and 55 dB) is captured well by the simulation.

5 CONCLUSIONS

We demonstrate in this paper that the DEA method can compute structure borne sound across a
complex structure – here a BiB substructure of a full tractor. The results presented in this paper
emphasise the level of detail provided by the DEA method and its flexibility in handling RBE
elements. Results over the full frequency range from 400 Hz to 4 kHz have been presented.

4
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Figure 4: SPL at the driver’s ear position: experiment (red); SEA/DEA simulations (blue).
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[7] D. J. Chappell, G. Tanner, D. Löchel and N. Søndergaard, Discrete flow mapping: transport
of phase space densities on triangulated surfaces, Proc. R. Soc. A, 469, 20130153, 2013.

[8] R. S. Langley and K. H. Heron, Elastic wave transmission through plate/beam junctions, J.
Sound Vib. 143, 241, 1990.

[9] A. N. Norris and D. A. Rebinsky, Membrane and Flexural Waves on Thin Shells, ASME J.
Vib. Acoust. 116, 457-467, 1994.

[10] G. Maidanik, Response of Ribbed Panels to Reverberant Acoustic Fields, J. Acoust. Soc.
Am. 34, 809-826, 1962.

5

224



MEDYNA 2017: 2nd Euro-Mediterranean Conference 25-27 Apr 2017 
on Structural Dynamics and Vibroacoustics   Sevilla (Spain) 

 

 
  
 

 
 
 

SIMULATION OF FINITE-SIZED DYNAMIC SYSTEMS 
USING WAVE TRANSMISSION METHODS 

Gerard Borello1 
 

1InterAC 
10 impasse Borde-Basse, 31240 L’Union, FRANCE 

gerard.borello@interac.fr  
 

ABSTRACT 
 

For predicting machinery noise in operating conditions over the audio frequency range, statistical 
methods are required. The most popular is the Statistical Energy Analysis (SEA). Originally based 
on modal response of coupled oscillators, this method has become more a wave approach in diffuse 
field condition than a modal kind of analysis. This is due to basic assumption of weak coupling 
between subsystems that is still the drawback of SEA method. SEA parameters of a built-up system 
cannot directly be obtained from deterministic modal formulation and have to be inferred from 
measurement or numerical FEM modeling by inverse techniques. In SEA, all internal calculated 
parameters are wave-based parameters thanks to some a priori assumption on system behavior. 
These parameters are extracted from simple infinite or semi-infinite propagating wave models. As 
the system under analysis is bounded and generally weakly damped, it is necessary to tune infinite 
wave parameters to fit to finite systems. Series of examples are presented to illustrate the observed 
differences between finite and infinite systems and how to correct the infinite calculation to get 
realistic parameters for finite-sized systems. 
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1 INTRODUCTION 

Acoustic transmission loss predictions are performed at low cost with the simplified Transfer 
Matrix Method (TMM). In TMM, layers are assumed isotropic and of infinite extent with finite 
small thickness in transverse direction. When gluing several layers on top of each other, the 
resulting system may be inserted within two semi-infinite acoustic volumes as shown in Figure 1. 
The sound transmission from a double-walled configuration may then be predicted by TMM 
representation by inserting an acoustic layer between two solid elastic layers. Sending an acoustic 
emitter wave impinging solid elastic layer 1, this wave will be partly reflected and partly transmitted 
through the different layers and will exit in the receiver fluid after some attenuation. 

The infinite extent of layers may cause artefact in the noise transmission prediction as shown 
in next paragraph. Finite-sized corrections are then introduced to make the prediction more regular 
with better test fitted results. 

2 MASS LAW SOUND TRANSMISSION USING INFINITE LAYER 

 

 
 

Figure 1. An acoustic sound package modelled as TMM. 
 
For predicting this attenuation, the laws under which stress and displacement are transferred from 
one layer to another need to be given. These laws depend on layer type. 

The simplest kind of layer is the pure inertial mass layer which oscillates without any 
residual stiffness. The mass layer is assumed uncompressible and is defined by sU  the mass density 
of the layer per m². The incident wave amplitude has constrained harmonic motion along y axis 
with acoustic potential defined as:  

� � cos sin, , ik x ik yx y e eT TM Z � �  (1) 

from which pressure and velocity are derived:  

0p i v
x
MZU M w

  �
w

 (2) 

On emitter side, the wave is reflected while on receiver side the wave is simply transmitted. Emitter 
and receiver potentials are therefore given by:  

� �cos cos sinik x ik x ik y
E e Re eT T TM � � � ;     cos sinik x ik y

R Te eT TM � �  (3) 

with R and T resp. reflection and transmission wave amplitudes. 
At each layer boundaries indexed by i, pressure and velocity are submitted to change, defining two 
state vectors both sides of the layer iS �  and iS �  such as 

iS �

iS �
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v v
S

p V
ª º ª º

  « » « »�¬ ¼ ¬ ¼
 (4) 

where V is the normal stress, opposite sign of the pressure. 
Continuity of S at interface between two layers is also assumed: 1i iS S� �

� . Downward velocity, v�  
and upward one, v�  are then equal. The stress variation both sides of this layer is equal to the inertial 

force s
v
x

U w
w

. It leads to the two following equations: 

0

0s

v v
v
t

V V U

� �

� �

½�  
°
¾w

� �  °w ¿

and in matrix form 
1 0

1s

v v v
Z

t
UV V V

� � �

� � �

ª ºª º ª º ª º« »  w« » « » « »« »¬ ¼ ¬ ¼ ¬ ¼w¬ ¼

 (5) 

The Z-matrix is actually transferring the downward information contained in the state vector S �  to 
upward one S � . Reversely S Z S� � � . In the case N layers are connected to each other's, if ES is 
the source vector in the emitter fluid, with same state vector variables for each layer, the state vector 
in the receiver fluid is obtained as:  

1 1 1
1 1..R N N ES Z Z Z S� � �
�  (6) 

To fully solve this problem, ES and RS need to be expressed as function of R and T. 
From (3), (4), (5) and (6), ES and RS  are obtained: 

cos cos cos1
E R

f f f f f f

S ik S ik T
c c cR
T T T

U U U
�ª º ª ºª º

  « » « »« »� � �¬ ¼¬ ¼ ¬ ¼
 (7) 

Using (5) and (6) in frequency domain where i
t

Zw
o

w
 , it comes: 

cos cos cos1 0 1
1f f f f f fs

T
c c ci R
T T T

U U UZU
�ª º ª ºª º ª º

 « » « »« » « »� � �� ¬ ¼¬ ¼¬ ¼ ¬ ¼
 (8) 

We end up with two equations and two unknown's T and R of which solution is: 

21
cos2cos cos1 1 0

1

s

s s
f f

f f f f

T R T i
i i cT R

c c R T

ZU T
ZU T ZU T U
U U

 � ½  °° ° �§ · �¾ ®� � � �  ¨ ¸ ° °¨ ¸
© ¹ ¿ °  �¯

 (9) 

T expression is called the acoustic mass law predicting the sound transmission between two acoustic 
volumes containing same fluid and separated by a pure thin inertial layer. 

It is remarkable to note that T is equal to 1 at grazing incidence 
2
ST   independently from mass 

density value, which is not the result we intuitively expect. If the incident wave is parallel to the 
mass layer, there is a non-zero pressure on the related surface of the mass layer but its normal 
velocity will be zero and then the layer would not radiate any pressure in the receiver fluid. The 
radiated pressure should then be null. There is no contradiction if we come back to the definition of 
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T:  T refers to the amplitude of the receiver wave which is parallel to the mass layer. The radiated 
intensity by the mass layer is given by the product of pressure time velocity which is expressed by: 

*
rad R RI p v   (10) 

From (7) it comes: 
22 cosrad f fI k c TU T   (11) 

The normal radiated power is then effectively null when 
2
ST   as T = 1. 

The transmission loss coefficient is commonly expressed as the ratio of radiated power over incident 
power normal to the panel and using (2) for incident pressure and velocity, it gives: 

22
2cos

cos
f frad

inc f

k c TI T
I k

U T
W

ZU T
     (12) 

The definition of transmission coefficient is thus ill-suited for describing the effective noise 
transmission under grazing incidences when panel size is infinite. It leads to overestimate wave 
intensity originated from incidences near 90°. Due to constrained infinite motion in y-direction, the 
stress on receiver side has always to compensate the emitter-side stress under grazing incidence, 
leading to equal stress both sides at 90° incidence as no other force may exist in the layer to cancel 
out the emitter stress. This observation is also true for other kinds of layer (porous fluids or elastic 
plates) but mass layer is particularly affected by infinite assumption. This is known for a long time 
and empirical correction is used when dealing with random-incidence acoustic field [1]. The 
random-incidence transmission loss is calculated by averaging (12) over incidence and in the case 
of mass-law, the averaging is limited to angles not exceeding 78.5°. This empirical value provides 
an average transmission coefficient that fits better with experimental measurements. 
To get more regular (i.e. more physical transmission loss prediction), we need to take into account 
the finite size of actual panels in deriving sound transmission loss expression. 

3 FINITE-SIZED SOUND TRANSMISSION LOSS 

 

Figure 2. Convolution through aperture. 
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The junction interface is now considered with finite size L. As shown in Figure 2, a monochromatic 
emitter wave having wavenumber ek  and incidence eT , constrains the junction wavenumber in the 
in-plane direction y to follow the Descartes's law:  

0 sine ek k T  (13) 

In ky-wavenumber space of the surface motion of the junction, the projected field of the incident 
wave is described by the distribution 0( )yk kG �  
The Spatial Fourier's Transform (SFT) of the velocity field v(y) on junction is noted by ( )yv k and 
from Parseval's theorem, the radiated power of the junction may be then expressed as: 

* *1( , ) ( ) ( ) ( ) ( )
2

F
rad r rad y y yP p y v y dy Z v k v k dkZ T

S
  ³ ³  (14) 

The junction aperture is introduced as a weighting window defined by the Heaviside function such 
as: / 2 / 2L x L� d d , w =1 and w =0 elsewhere.  

The SFT of w is given by ( ) sin / ( )
2 2y y y y
L Lw k L k k L kª º  « »¬ ¼

sinc . 

Assuming radZ  weakly dependent of ky, the monochromatic wave radiated power gives: 

2
0 0( , ) ( ) ²( ) ²( )F

rad r rad y y y rad yP Z V k k w k dk P w k kZ T G f
f �  �³  (15) 

Intensity is thus expressed as:  

0( , ) ²( )F
rad r rad yI I k kZ T f �sinc  (16) 

The finite-sized transmission loss at a given incidence eT  in the emitter is obtained from the infinite 
transmission loss under incidence D  by the relationship: 

 

0

0

22
0

_ 0

2

0
0

cos( ) ( )
1( )

cos cos
( )

k

finite f y y
n rad

Finite e k
e e e e e e

y y

Z v k k dk
I
c c

k k dk

D
W T

U T U T

f �
  

�

³

³

sinc

sinc

 (17) 

Pushing the reference incident intensity under the integrand, gives the relationship between 
the infinite and finite transmission loss. 

0

0

2 /2
2 2

0
0 0

/2
22

00
00

cos( )
( ) cos ² ( sin sin )

cos
( )

cos( ) ( )( )

k
f

y y e e e
e e e

Finite e k

yy y

Z v
k k dk k k d

c

k k dk k dk

S

D

S

D
W D T D D

U T
W T

D D

f
f� �

 |
��

³ ³

³³

sinc sinc

sincsinc
 

(18) 

The finite transmission loss is therefore obtained as a cosinus/sinc²-weighted average of the infinite 
transmission loss. This correction is called Convolution correction.  
 
A more resource-demanding correction has been proposed in [3] and considers the finite window 
aperture (without the layer) as an additional transmission loss with specific radiation efficiency.  
A single specular wave impinging the aperture with 0 incidenceT �  is carrying an incident 
intensity:  
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2
0

0 0
0 0

cospI
c

T
U

   (19) 

When the layer is infinite, the radiated power is expressed as: 
2

cosr
rad r

r r

pI
c

T
U

f    (20) 

The sound transmission loss coefficient in finite condition, FW , is written as function of infinite 
transmission coefficient, Wf : 

0

F F
r r r

F
r r

I I I
I I I

W W
f

ff f    (21) 

The insertion loss of the layer is assumed independent of the aperture.  

The ratio 
F
r

r

I
I f  is equal to the ratio of the intensity radiated by the velocity trace of the incident 

pressure to the intensity radiated by the infinite aperture. In next formulas emitter and receiver fluids 
are assumed of different nature. 

> @

2
20

0 02
0 0

² cosF r r
r rad r r n rad

c pI c v
c

U
V U V T

U
   and 

2
0

0 0

cosr r
pI
c

T
U

f   (22) 

2
0

0 0

cos
cos

F
r r r

rad
r r

I c
I c

TUV
U Tf    (23) 

For identical fluids both sides of the aperture, the ratio of finite to infinite intensity becomes: 

0cos
F
r

rad
r

I
I

V Tf    (24) 

 

 
 

Figure 3. Radiation efficiency of the aperture. 
 

Formula (24) proposes a cosinus/radiation efficiency weighting of the infinite transmission loss and 
requires to calculate the radiation efficiency of the aperture prior to apply the correction. This 
correction is called Sigmarad correction. Advanced demonstration of this correction may also be 
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found in [4]. Formula (14) may be modified using the normal velocity to the aperture, vn. In that 
case, (14) becomes: 

2 20
2 2

0

1( , ) ( ) ( )
2 cos 2

f f f fF
rad n y y n y y

y

c ckP v k dk v k dk
k k

U U
Z T

S T S
  

�
³ ³  (25) 

The operator 2 2
01 / yk k�  is proportional to the infinite radiation efficiency of the aperture and (14) 

may be then re-formulated as (22). The simple convolution correction does not operate on normal 
velocity and will imply some limitation in low frequency range as shown in next numerical 
examples. 

4 NUMERICAL EXAMPLES 

4.1 Mass layer transmission loss 

The Transmission Loss in dB is computed as 10 log t

inc

ITL
I

§ ·
 � ¨ ¸

© ¹
 in SEA+ software [5]. SEA+ 

implements both Convolution and Sigmarad correction for transmission loss calculation using 
TMM. In that case graphed TL's are all random-incidence TL obtained by averaging discrete 
incident ( )TL T  ( over 0 to 90°). Fluid is standard air both sides. 
TL is predicted for a 2.7 mm-thick mass layer with volume density 1000 kg/m3. The mass layer has 
then a density of 2.7 kg/m². The area is fixed to 1x1 m². 
Predicted TL's are given in Figure 4 for three configurations: no correction, Convolution correction 
and Sigmarad correction. In Figure 4-left, spatial windowing increases the TL of 2 dB on average 
around 1000 Hz and below, larger correction factor is obtained with Sigmarad below 300 Hz (up 
to + 5 dB). In Figure 4 right, the opening is 5x5 m². The spatial windowing correction is found 
smaller as expected.  

4.2 Dash panel firewall insulation 

The firewall of a dash panel may incorporate many layers as shown hereafter in Figure 5 (left). In 
that particular case, the spatial window is about same effect than in previous case :+ 5 dB correction 
for Sigmarad correction in figure 5 (right). 

4.3 Mass layer transmission loss in water 

The calculation of transmission loss is performed by inserting between two SEA water cavities a 
1x1 m² mass layer of mass density 390 kg/m². Figure 6 shows the effect of spatial windowing on 
TL leading to an increase of around 4 dB at low frequencies.  

4.4  Spatial windowing of mechanical line junctions 

The convolution correction is used also for correcting analytical calculation of line junctions SEA 
coupling loss factors (CLF) in [5]. This correction is applicable when two plates with a common 
edge are only physically connected on a fraction of this edge. 
Figure 7 shows the predicted configuration. The Coupling Loss Factor (CLF) is first identified 
numerically by the Virtual SEA (VSEA) method [2], [6], applied to FEM model of the two coupled 
plates. This model takes into account the actual coupling geometry: the two plates are welded on 
100 mm on a fraction of plate edges (1m length). VSEA model delivers the flexural CLF between 
the two plates in direction 1-2 and 2-1. Plate 1 is made of 1-mm steel and plate 2 of wood (10 mm-
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OSB). Both systems are meshed with plate elements in Nastran and modal extraction is pushed up 
to 2000 Hz which corresponds to the frequency band of VSEA CLF identification. 
Second, CLF is predicted from two coupled analytical plates of which transmission loss is computed 
from wave theory in SEA+. In the analytical model, plates are connected on a line of 100 mm. The 
edge length is declared equal to 1 m. Spatial windowing correction is successively activated and 
deactivated and resulting CLF's are compared with VSEA CLF. Results are given in Figure 8. We 
can see the effect is much more important than in previous acoustic cases. The spatial windowing 
analytical prediction is closer from VSEA CLF. Spatial windowing is thus a useful tool to improve 
the predictive quality of analytical mechanical transmission in SEA models. 
 

 
 

Figure 4. TL with spatial windowing for 2.7 kg/m² mass layer Area 1x1m² (left) & 5x5 m² (right). 
 

  
 
 
 
 
 
 
 
 
 
 

Figure 5. On right TL of dash panel (firewall) with and without spatial windowing (Area 1x1.5 
m²) and on left dash panel layers. 
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Figure 6. TL of mass layer 390 kg/m2 between two sea water cavities (without spatial windowing 
and with Sigmarad correction). 

 

 
 

Figure 7. Spatial windowing correction of structural line-junction CLF (two square-1 m² plates 
connected at right angle on 100 mm along 1 m edge). 

 

 
 

Figure 8. Spatial windowing correction of structural CLF compared to VSEA CLF. 
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5 CONCLUDING REMARKS 

Spatial windowing technique is an efficient way to make analytical predictions closer to measured 
data. The amplitude of the correction depends on the physics of the model. We have seen an 
attenuation of the mass-driven sound transmission of around 4 to 5 dB in the low frequency regime 
for the acoustic coupling. For structural coupling, corrections vs. frequency are more broadband 
and may lead to increase of vibration transmission. They should be enabled when only a fraction of 
connected plate edge is allowed to transmit noise. More generally, the correction is valid when the 
aperture size of the junction is smaller than the container (plane or line) size. For dynamical systems 
with complex topology modelled using SEA, some care has then to be taken before to apply the 
relevant corrections. 
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ABSTRACT

The Statistical Modal Energy Analysis (SmEdA) is a variant of the Statistical Energy Anal-
ysis (SEA) developed to predict the high frequency behaviour of structures by dividing them
into subsystems without requiring a modal energy equipartition. The method is based on the
modal bases of uncoupled subsystems, and coupling loss factors are derived from Finite Ele-
ment Analysis. Uncertainty Quantification can thus be applied in such a configuration at either
the subsystem level, with respect to the physical input parameters (eg material properties and
dimensions), or at the coupled model level with respect to the coupling factors or the modal
data used to compute them. For UQ to be physically meaningful, it is necessary that uncer-
tainty modeling at the coupled model level be representative of uncertainty at the subsystem
level. A strategy based on sampling at the coupled model level using a covariance matrix com-
puted at the subsystem level is proposed here. The methodology is formulated and applied to
a four-subsystem structure. The UQ performed at the two levels is shown to be coherent but
with reduced computational costs at the coupled model level allowing a higher number of UQ
simulations.
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1 INTRODUCTION

The prediction of high frequency noise and vibration levels requires the use of specific methods.
One well-known approach is the Statistical Energy Analysis (SEA) that provides a statistical av-
erage of the vibratory or acoustical behavior of the structure of interest [1, 2]. The full system
is divided into subsystems and energy flows between these subsystems are computed. The pa-
rameters and equations are obtained under certain hypotheses [3], one of which is the modal
equipartition of energy in subsystems. To overcome this limitation, the SmEdA approach has
been developed as a reformulation of SEA without requiring energy equipartition [4]. The
modal energy equations lead to coupling coefficients derived from finite element simulations.
In an uncertain context the evaluation of the impact of different sources of uncertainty on the
output quantifies of interest, called Uncertainty Quantification (UQ), is an important part of a
global Quantification of Margins and Uncertainties (QMU). The effect of uncertainties in SEA
models has been studied using many approaches such as the partial derivative analysis and the
design of experiments on SEA factors [5], parametric methods on FE components and non-
parametric studies on SEA elements in a hybrid FEM/SEA approach [6]. It thus appears that
uncertainty quantification can be performed using either the input physical parameters or the
coupled parameters involved in the energy equations and derived from the physical inputs [7].
UQ at the coupled model level is computationally more efficient but has no direct physical
meaning. It is thus necessary to include information about how uncertainty is propagated from
the subsystem level. A strategy based on the use at the coupled model level of a covariance ma-
trix computed at the subsystem level is proposed here. The SmEdA equations are first recalled
to introduce the coupled parameters, then the proposed methodologyis presented, and finally
this methodology is applied to an academic model of four coupled plates.

2 SMEDA EQUATIONS

SmEdA relies on the equations of the SEA. The main difference between both approaches is
that SmEdA not only describes the coupling between subsystems but also the coupling between
the individual modes of the different subsystems. In this way the restrictive modal equiparti-
tion assumption is not required. The resulting formulation for a two-subsystems model can be
written as follows,
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where p and q are modes of subsystems 1 and 2, respectively, with corresponding natural fre-
quencies, !

p

and !
q

, M1 and M2 are the number of modes for subsystems 1 and 2. The internal
loss factors (ILF) ⌘

p

and ⌘
q

are computed for each mode, and the coupling loss factors (CLF)
⌘

pq

are derived for a pair of modes rather than for a subsystem pair. The subsystem energies are
then determined as sums of the modal energies,

E1 =

M1X

p=1

E
p

, E2 =

M2X

q=1

E
q

. (3)

The method requires calculating the modes of each uncoupled subsystem, generally determined
from a Finite Element (FE) analysis, and it can be considered as an approach for which uncer-
tainty quantification can be performed at different levels: the first one, at the subsystem level,

2
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where uncertainty is introduced in the input parameters (material, geometry), and the second
one, at the coupled model level where uncertainty is introducing in the modal data.

3 METHODOLOGY

The figure 1 presents the flowchart of activities performed to quantify uncertainties at the sub-
system and at the coupled model levels. Mesh refinement ensures the insensitivity of results to
mesh discretization and a significant level of prediction uncertainty. Sampling is performed with
the Monte Carlo (MC) method based on an assumed multivariate normal distribution. This sam-
pling uses the mean and covariance matrix that define the distribution: the covariance matrix
informs the sampling at the coupled model level using the results of sampling at the subsys-
tem level. Effect screening is useful to limit uncertainty quantification to the most influential
variables leading to significant computational savings.

Develop numerical model: SmEdA equations

Perform mesh refinement

Sample FE model Perform effect screening
of subsystem parameters

Assess prediction vari-
ability according to

subsystem parameters

Generate covariance matrix

Sample at the coupled
model level using a multi-
variate sampling according

to the covariance matrix

Perform effect screening of
coupled model parameters

Assess prediction vari-
ability according to

coupled model parameters

Subsystem assessment

Coupled Model assessment

Figure 1: Uncertainty Quantification at the subsystem and at the coupled model levels.

4 CASE-STUDY APPLICATION

The methodology is applied to a four-subsystem model shown in
figure 2. The plates are made of steel (E = 210 GPa, ⇢ = 7800
kg.m3), with a constant damping ratio of 0.05 for all subsystems.
Mesh refinement is performed both at the subsystem level and at
the coupled system level to ensure less than 1% error on the natu-
ral frequencies up to 2 kHz, and the convergence of the number of
modes and SmEdA energies. 5000 Monte Carlo samples are per-
formed at the coupled model level and the vibratory energies thus
obtained are compared to those resulting from 100 Monte Carlo
samples performed at the subsystem level.

1.0 m 

1.5 m 
0.7 m 

1.1 m 

2.3 m 

3 mm. 

6 mm. 

2 mm. 

3 mm. SS #1 

SS #4 

SS #3 

SS #2 

Figure 2: Four-
subsystem model.

Figure 3 presents the vibratory energies obtained at the subsystem level (in red) and at the
coupled level (in blue), and the global statistics for the Monte Carlo sampling : the diagonal
plots show the comparison of the SmEdA histograms for each subsystem, the out-diagonal plots
show the comparison of the output-output scatter plots for pairs of subsystems. The consistency
in the obtained results demonstates that the use of coupled data such as the natural frequencies

3
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constitute an adequate proxy to the use of the input parameters for uncertainty quantification,
leading to a significant reduction in computational costs.

Figure 3: Comparison of results obtained from MC sampling at the subsystem and coupled
model levels.

5 CONCLUDING REMARKS

UQ at the subsystem level leads to results that are physically meaningful but computationally
expensive, while UQ at the coupled model level is harder to interpret but computationally more
efficient. The proposed approach uses a covariance matrix informed by minimal sampling at
the subsystem level to propagate uncertainty at the coupled system level. The results are shown
to be consistent and the reduction in computational burden allows to increase the range of
predictions.
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ABSTRACT

Structural health monitoring has attracted much attention in many engineering fields. The four-
level damage identification process: existence, localisation, severity and prediction of damage
evolution, can be partly realised if a suitable indicator is chosen. In this paper a new ”La-
grangian” damage indicator for rib-reinforced plates is presented based on the structure’s fre-
quency response function (FRF). This has been developed from the concepts of strain energy
and curvature allowing for the creation of a Lagrangian indicator field. Damages and singular-
ities present in the structure are characterised by a localised drop in value of the Lagrangian in
the field. In the post-processing of results, the plate is split into multiple segments and the mean
Lagrangian is calculated for each segment. This process has made the damage more apparent
and easier to identify. These results show that the developed damage indicator is effective in
detecting damages in rib-reinforced plate structures.
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1 INTRODUCTION

Plate-like structures are widely used in various engineering applications, ranging from their use
in the aerospace industry to the mechanical industry. As such, it is important to monitor the
damage condition of plates to avoid unpredicted structural failure which may have severe con-
sequences. In the field of structural health monitoring (SHM), several techniques have been
proposed to monitor damage on various structures. Doebling [1] performed a thorough review
of damage identification techniques, focusing on the changes of dynamic response of the struc-
ture. These are more commonly known as vibration-based methods. A method based on a
structure’s mode curvature shape was first demonstrated by Pandey [2] who successfully ap-
plied it to both cantilever and simply supported beams. Based on this concept, Wu [3] proposed
an indicator based on the change in uniform load surface (ULS) curvature for two-dimensional
plate structures using the mode shapes of the first few modes of a damaged and undamaged
structures. Another damage indicator proposed by Navabian [4] was based on a plate’s mode
shape curvature as well as its displacement and slope. Cornwell [5] has also shown that the
mode strain energy before and after being damaged can be calculated from its curvature. An
indicator using spectral strain energy proposed by Bayissa [6] has been proven to be effective
in detecting damage in plates. This damage indicator uses the curvature power spectral density
and moment power spectral density of the plate. Sampaio [7] chose to use a plate’s frequency
response function (FRF) to calculate its curvature.

In this paper a new Lagrangian damage indicator is introduced, based on the concepts
mention above. This damage indicator was tested through the use of a 0.6m ⇥ 0.0005m ⇥
0.0085m Akyplac R� plate numerically modelled in ANSYS. The plate was then separated into
20 segments to calculate the mean damage indicator for each segment.

2 DAMAGE INDICATORS

It has been previously proven that the curvature can be an effective indicator for damage identi-
fication in structures [2, 7], which is calculated by using the finite central difference approxima-
tion. When taking into account the kinetic, strain and elastic energies of the plate, the Lagrange
damage indicator can be written as:
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However, this paper focuses only on the kinetic variables - curvature and velocity. The
effect of mass and flexural stiffness were neglected as these variables are difficult to measure
when a plate is in service. Calculations of the damage indicator at the specific point of dam-
age as well as the damaged segment showed that they increased when the poisson’s ratio was
increased from 0 to 0.5. However, this increase did not affect the average segment values sig-
nificantly. Thus, the Poisson’s Ratio was set as 0 for all performed calculations, ignoring the
elastic energy term. The damage indicator used in this paper is therefore defined as:
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)2 � (
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With the FRF of the structure, the distribution of the Lagrangian indicator field was
obtained across the entire plate.
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3 DAMAGE DETECTION ON NUMERICAL EXAMPLES

For the analyses, an Akyplac R� twinwall polypropylene sheet was used. It is a lightweight
durable corrugated plastic and is mostly used for packaging purposes. The model used for the
dynamic analyses was a 0.6m ⇥ 0.8m ⇥ 0.01m plate, composed of a 0.75mm-thick upper and
lower layer reinforced by 97 ribs with a thickness of 8.5mm. These ribs had the dimensions of
0.6m ⇥ 0.0005m ⇥ 0.0085m and were each separated by a 8.3mm gap. They were numbered
sequentially from the bottom up and a distance of 1.6mm was between the first/last rib and
its nearest edge. The SOLID185 elements in ANSYS were chosen for the modelling of both
the layers and the ribs. Along the edges of plate, free boundary conditions were used and an
excitation point was placed normally in the middle of plate.

Two types of damages were discussed: the damage in the ribs and the damage on the
skin. It was found that the first Lagrangian-like indicator was more sensitive to the damage in
the ribs. In the model used, there were 100mm-long damages in the 32th and 33th ribs with a
distance of 100mm to the nearest edge. The presence and location of damage were able to be
identified (Figure 1(a)) through a drops in the Lagrangian at the area of the damage. The lowest
Lagrangian value was found to be -6.825 compared to the average plate Lagrangian value of
-0.0587.

Numerical analyses on other damage cases were also performed. Figure 1(b) shows the
indicator field with a 40mm-long damage in the 32th and 33th ribs where it can be seen that
the zone with the reduced Lagrangian indicator has shortened. As such, this indicator is able
to estimate the length of the damaged area, and hence, the severity of the damage. It should be
noted that the Lagrangian value dropped to -49.171 at the damage zone compared to the plate
average of -0.082. Another 100mm-long damage was created in the 23th and 24th ribs. The
indicator field in Figure 1(c) shows the location and the length of damages. Furthermore, a study
was performed with the two damages cases previously discussed and an additional 40mm-long
damage in the 61th and 62th ribs (Figure 1(d)). From this, it has been shown that the indicator
is able to identify multiple damaged areas on the same structure.

(a) Plate with a 100mm-
long damage

(b) Plate with a 40mm-
long damage

(c) Plate with a 40mm-
long damage and a
100mm-long damage

(d) Plate with two
40mm-long damages
and a 100mm-long
damage

Figure 1. Lagrangian indicator field for different damage cases

4 RESULTS POST-PROCESSING

To make the results less susceptible to noise and other minor variations in the Lagrangian In-
dicator field, both the damaged and the undamaged plates were divided into 20 segments of
0.15m ⇥ 0.16m each. The mean Lagrangian for each damaged segment was then calculated
and the difference between it and its undamaged counterpart was found.

Two damage cases were used; the plate with a 100mm-long damage and the plate with a
40mm-long damage. Again, these damages have been characterised by a drop in the segment’s

3
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Lagrangian value. As can be seen in Figure 2, it is easier to identify the damage locations when
it is compared to the original undamaged plate. The Lagrangian of the damaged segment also
varied for the different damage cases. It was modelled to be at -0.4667 for the 40mm-long
damage case and -0.1139 for the 100mm-long damage case.

(a) Plate with 100mm-
long damage

(b) Plate with 100mm-
long damage compared
with undamaged plate

(c) Plate with 40mm-
long damage

(d) Plate with 40mm-
long damage compared
with undamaged plate

Figure 2. Damaged plates split into segments and compared to undamaged plate

5 CONCLUSION

In this paper, a Lagrangian damage indicator based on the kinetic energy and curvature of the
plate has been proposed. This damage indicator has been proven to be effective in detecting and
locating the presence of one or multiple damage cases.

For future work on the subject, the relationship between the damage severity and the
change in Lagrangian should be further investigated. This will allow for a more accurate mea-
surement of the extent of damage.
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ABSTRACT 
The present paper has introduced a discrete physical model to approach the problem of 
vibrations of cracked beams resting partially on elastic foundations. The model consisted on a 
beam made of several small bars, evenly spaced. The bending stiffness was modeled by spiral 
springs, the crack was also modeled as a spiral spring with a reduced stiffness, and the Winkler 
soil stiffness was modeled using linear vertical springs. Concentrated masses, presenting the 
inertia of the beam, were located at the bar ends. This model has the advantage of simplifying 
parametric studies, because of its discrete nature, allowing any modification in the mass and the 
stiffness matrixes. Therefore, an application for a simply supported beam resting partially on 
elastic foundations case is carried out. 

 
Keywords: Discrete; vibration; crack; foundation. 
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1 INTRODUCTION 

The vibration of cracked beam resting on elastic foundations wears a great interest for many 
engineering fields such as civil and mechanical engineering. Both continuous and discrete models 
have been established in order to approach this problem. However, the discrete models have the 
advantages of being more adaptable to computer programmes. A discrete method such as the 
Finite Element Method (FEM) is the first to address the problem numerically [1]. The Differential 
Quadrature Method (DQM) is also employed for the solution to similar engineering problems 
involving beam vibration and foundation [2]. Therefore, P. Malekzadeh and G. Karami [3] gather 
the advantages of both previous methods (DQM & FEM), to investigate the free vibration and 
buckling analysis of thick beams on two-parameter elastic foundations. 
 In this paper and based on previous works [4] a discrete model for the vibration of cracked 
beam resting partially on elastic foundations is established. A straight application of the theory is 
developed, where a cracked simply supported beam is resting partially on elastic foundations. 

2 GENERAL FORMULATION 

Based on the model introduced by A. Khnaijar and R. Benamar [4] for nonlinear vibrations of 
uncracked beams resting on elastic foundation, a new model is developed here by introducing a 
crack beam model. The present model consists on the N-degree-of-freedom discrete model shown 
in Fig. 2, with N masses 1, , Nm m} , located at the ends of (N+1) rigid bars, connected by (N+2-1) 
spiral springs simulating the beam bending stiffness.  The crack is modeled by a spiral spring 
simulating the crack reduced stiffness, estimated using the model presented in Fig. 1. The stiffness 
of the rth spring is denoted by rC , for 1 to ( 2 1)r N � � ), and  the stiffness coefficient of the 
spiral spring, presenting the crack, is denoted by cC  . The bending moment M  in the rth spiral 
spring connecting the bars (r-1) is given by: rC T � 'M ; -1r rT T T'  �  being the angle between 
the bars adjacent to the node r. The Winkler foundations are modeled using the longitudinal vertical 
spring distribution, with l

rk presenting the stiffness coefficient of the thr linear spring, for 1 to r N . 

 
(a)         (b) 
Figure 1. A partially supported continuous S-S beam. 

The nondimensional formulation of the problem presented is essential to widen the validation 
basis of the results. To define the nondimensional parameters ijm , s

ijk , l
ijk , let’s put: 

� � � �3 3l l
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  As the nondimensional formulation is established, the general expression for *
ijm , *s

ijk  and 
*l

ijk for the discrete model become as follows: 
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x The nondimensional Mass tensor *ª º¬ ¼M / *
ijm : 

 *  for , 1,..,ij ijm i j NG    (2) 

x The nondimensional Spiral springs tensor *sª º¬ ¼K / *s
ijk  
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and the other values of *s
ijk  are obtained by symmetry relations, or are equal to zero. 

 
3 3 3(1 )  with  and   

12 12
cr
i

bh a bhI I
h
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Icr and I,for rectangular sections, are respectively being the inertial moment of the reduced beam, 
calculated by putting the neutral fiber of this section in the center of the reduced beam section and 
the inertial moment for uncracked section, and [  refers to the dimensionless crack depth ratio. 

x The nondimensional Winkler springs tensor *lª º¬ ¼K / *l
ijk  

 *  for , 1,...,l
ij ijk i j NDG   (7) 

The Winkler stiffness coefficient is given by: 
  

D and O  being the nondimensional parameter: 

 
� � � �

4 4

4 4  with 
1 1

kL kL
EIEI N N

OD O   
� �

  (8) 

3 APPLICATION: A PARTIALLY SUPPORTED BEAM WITH A SIMPLY 
SUPPORTED ENDS 

A simply supported beam is assumed to be subjected to the effect of partial intermediate supports 
Fig. 1. Fig. 2 shows the cracked beam first two modes frequencies, for a simply supported beam, 
versus the crack position (c/l) and depth (ξ=a/h), with no elastic foundation (B=0). Fig. 3 shows the 
cracked beam first two modes frequency, for a simply supported beam, versus the crack position 
(c/l) and depth (ξ=a/h), the ratio of the supported span to the total span B chosen covers 50 percent 
of its span (B=0.5) and the soil stiffness 4O S . The shift in the curves for the case with elastic soil 
proves the effect of the soil stiffness and position on the beam frequencies. 
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Figure 2. The cracked beam frequency, for a simply supported beam, versus the crack position 

(c/l) and depth (ξ=a/h) for the first 2 modes: B=0. 

 
Figure 3. The cracked beam frequency, for a simply supported beam, versus the crack position 

(c/l) and depth (ξ=a/h) for the first 2 modes: B=0.5 and 4O S  

4 CONCLUSION 

A discrete model of cracked beam resting partially on elastic foundation was introduced in the 
present paper. An application was carried out for a simply supported beam, where a frequency 
curves versus crack magnitudes and locations were drawn for a partially supported cracked beam.  
 
REFERENCES 
[1] T. Yokoyama, “Vibration analysis of Timoshenko beam-columns on two-parameter 
elastic foundations” Computers and Structures, 61:995–1007, 1996. 
[2] Chang-New Chen, “Vibration of prismatic beam on an elastic foundation by the 
differential quadrature element method”, Computers and Structures, 77:1-9, 2000. 
[3] P. Malekzadeh and G. Karami, “A mixed differential quadrature and finite element free 
vibration and buckling analysis of thick beams on two-parameter elastic foundations”, Applied 
Mathematical Modelling, 32:1381–1394, 
[4] A. Khnaijar and R. Benamar. A Discrete Model for Nonlinear Vibration of Beams Resting 
on Various Types of Elastic Foundations, Advances in Acoustics and Vibration, 2017. 

246



MEDYNA 2017: 2nd Euro-Mediterranean Conference
on Structural Dynamics and Vibroacoustics

25-27 Apr 2017
Sevilla (Spain)

STATISTICAL ENERGY ANALYSIS, ASSUMPTIONS AND
VALIDITY

A. Le Bot1 , N. Totaro2 and T. Lafont1,2

1Laboratory of tribology and system dynamics
Ecole centrale de Lyon, Ecully, FRANCE

Email: alain.le-bot@ec-lyon.fr, thibault.lafont@cpe.fr

2Laboratory of vibration and acoustics
INSA de Lyon, Villeurbanne, FRANCE

Email: nicolas.totaro@insa-lyon.fr

ABSTRACT

This study outlines the question of validity of statistical energy analysis with regard to its as-
sumptions. We discuss the necessity of four assumptions: rain-on-the-roof excitation, weak
coupling, large number of modes and light damping. We show that when all of these assump-
tions are satisfied, statistical energy analysis provides a satisfactory result but when one of
these assumptions is violated, statistical energy analysis prediction presents a discrepancy com-
pared to a reference calculation. The discussion is illustrated with a simple example of coupled
plates.
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1 INTRODUCTION

Statistical energy analysis [1, 2] is a well-known theory of sound and vibration suited to the
domain where the number of modes is so high that the usage of finite element method is not
tractable. Statistical energy analysis is based on statistical physics concepts such as mean-
free path, modal density and equipartition of energy. It is the counterpart of Sabine’s theory
of reverberation in room acoustics. Although it is commonly claimed that statistical energy
analysis applies at high frequencies, it is more exact to say that statistical energy analysis is the
theory of thermal equilibrium where sound and vibration are diffuse.

2 STATISTICAL ENERGY ANALYSIS

The principle of statistical energy analysis is quite simple. The main result is Lyon’s law [3],
or coupling power proportionality, which states that two subsystems in which the vibrational
field (velocity field for structure or acoustical pressure for sound) is diffuse and lightly coupled
exchange a vibrational power proportional to the difference of their modal energies. This reads
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where M
i

is the total mass of subsystem i. If the two subsystems are two-dimensional (like
plates) and are coupled through a line of length L whose mean transmission efficiency is noted
T , then

⌘
ij

=
Lc

g

i

T

⇡!S
i

(3)

where c
g

i

is the group speed of waves in subsystem i and S
i

its area. In all cases, the coupling
between subsystems must be conservative.

To derive this result, the minimal list of assumptions is

• Rain-on-the-roof excitation

• Light damping

• Large number of modes

• Weak coupling

When these conditions are satisfied, the vibrational field is diffuse in all subsystems or equiv-
alently, equipartition of energy is reached. Each subsystem is therefore in the state of thermal
equilibrium. The weak coupling limits the exchange of energy to a small level which does not
disturb the diffuse field in the vicinity of coupling.
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3 DIFFUSE FIELD

The first three conditions ensure that a diffuse field is established in all subsystems [4]. In
Figure 1 is shown the relative standard deviation of repartition of energy in rectangular plates.
The abscissa is the number of wavelengths per mean-free-path and the ordinate is the damping
loss factor of the plate. We see that the domain of diffuse field for which the standard deviation is
small is confined by two criteria. The frequency must be high (vertical line) and the attenuation
of waves must be small (horizontal line tilted on the right).
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Figure 1: Relative standard deviation of repartition of energy in rectangular plate in the dimen-
sionless wavelength - damping loss factor plane. The zone of diffuse field is confined to high
frequencies and small damping.

4 EXAMPLES OF COUPLED PLATES

The first example is shown in Figure 2. The structure is made of six rectangular plates assembled
by right angle couplings. Plate 1 is submitted to a random transverse force field (rain-on-the-
roof). The response is observed in plate 6. Three calculations are performed: a reference
calculation based on a closed form solution of the governing equations, a SEA calculation
with Equations (1) and (3), and a geometrical acoustics prediction (see Reference [5]). We
observe that when the damping is light (⌘ = 1%), the prediction of SEA is always correct.
The four octave bands are located in the region of diffuse field of Figure 1. The error of SEA,
compared with a reference calculation is negligible. But when the damping is strong (⌘ = 10%),
significant errors of SEA appear. Note that geometrical acoustics prediction (ray) is still valid
because the frequency remains high. This examples highlights that SEA requires two conditions
in general: large number of modes (high frequency) and low damping.

The second example is shown in Figure 3. The system is made of three rectangular plates
with random resonators and coupled through a spring of stiffness K. The coupling strength is
controlled by varying K. A single point random force assumed to be white noise is applied to
the top plate. Two calculations are performed: SEA by applying Equations (1) and (2) and a
reference calculation by a semi-analytical method. We observe that the thermal conductivity
�SEA = !⌘

ij

n
i

predicted by SEA is correct compared to the ratio �REF = P
ij

/(E
i

/n
i

�E
j

/n
j

)
computed by the reference calculation when the coupling is weak. But when the coupling
strength increases, a large discrepancy is observed between SEA and reference. It may even
arise that the flow of energy is reversed giving a negative value of �. This anti-thermodynamics
flow of energy has been observed even for a population of nominally similar plates with different
realisations of resonators as shown by the grey zones of Figure 3.
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Figure 2: Six rectangular plates in bending vibration and results for ⌘ = 1% (middle) and
⌘ = 10% (right). The upper bar diagrams give the energy versus octave band by three methods:
SEA, ray and reference calculation. The lower bar diagrams give the error of SEA and ray-
tracing compared to reference.
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Figure 3. Three rectangular plates in bending vibration with random resonators.

5 CONCLUDING REMARKS

In this paper, we have shown that statistical energy analysis is based on several assumptions that
are random excitation, light damping, large number of modes, and weak coupling. Although the
first three conditions may be reduced to the single condition of diffuse field in all subsystems,
the last one is an imperative requirement that cannot be relaxed in general.
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ABSTRACT

The study is devoted to rotor supported by Active Magnetic Bearings (AMBs) and subjected
to base motion. The machine casing is considered rigid and able to move with 3 translations
and the 3 rotations. The objective is to assess the suitability of machine supported by AMBs
to withstand base motions for applications such as compressors on FPSO (Floating production
storage and offloading). Experiments were performed of an academic test rig. The controller
was an augmented PID similar to that used in industrial applications. At this stage, only har-
monic motion is considered. Two levels of severity were applied. The results obtained in this
configuration demonstrated the stability of the rotor-AMB system.
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1 INTRODUCTION

Turbomachines manage the fluid-structures energy transfer, they have to be able to withstand
severe environmental conditions. Consequently, a major focus of the research engaged by in-
dustrial and academic laboratories concerns their reliability in any circumstances. Most of the
rotating machinery can be considered as on-board machines. Aircraft engines, automotive tur-
bochargers or compressors fixed on an oil offshore-platform are notable examples. The base
motion generates complex rotor dynamics in particular in the case of base rotations yielding
parametric instabilities. At certain rotating frequencies of the support, combined with the natu-
ral frequencies of the rotor, instability zones emerge and depend on the amplitude of the rotation
angle [1, 2]. The dynamic behaviour of on-board rotating machines should then be carefully
analysed to improve the reliability and to maintain a maximal operability of the machines. On
the other hand, Active Magnetic Beatings (AMBs) are more and more utilized in industrial ap-
plications for their several advantages (no wear due to friction, no oil system, compact space
requirement). They are inherently unstable, therefore a feedback control is needed and the
PID is the most implemented controller. Different studies focused on the control of rotors sub-
ject to base motion using magnetic forces. The sinusoidal base motion of a non-rotating mass
mounted on magnetic bearings was experimentally and numerically analysed by [3]. Three
PID controllers were tested and non-linear responses were found in the less damped controller.
In [4], the transient dynamic behaviour of a rotor supported by homopolar permanent magnet
bias magnetic bearings subjected to vertical shock was simulated. Rotor-to-stator contact was
found. The feedforward control loop is often used to control base motion in parallel with a
feedback control loop. This method was employed by [5] to reduce the harmonic translation
motion of the base considering a rigid rotor supported by non-linear AMBs. Three controllers
were tested in [6] and the H1 controller has the greatest effect in reducing the rotor response
due to unbalance and horizontal shock of the base. This work is a part of a research program
aim at the development of turbomachines mounted on AMB. Previous work demonstrated the
effectiveness of the developed control strategies to have a reliable behaviour under several oper-
ating conditions [7]. In this work, experimental investigations are presented, the aim is to assess
the effectiveness of the developed augmented PID to maintain the rotor operating under severe
events. Only experimental results are presented. The experimental conditions will be presented
first, then the results will be discussed and finally conclusions and perspectives will be dressed.

2 EXPERIMENTAL CONDITIONS

The experiments were performed using an academic test rig (Figure 1). It is a commercial prod-
uct manufactured by SKF® and was delivered with a dedicated PID controller. The test rig is
equipped with two identical AMB called NDE (Non Drive End) and DE (Drive End) bearings.
Each bearing has a maximum static capability of 280N. The action lines are positioned in the
configuration load between axes. They are powered in differential driving mode with a bias cur-
rent of 1A. Current are provided in the range of 0-3A using PWM amplifiers. Two displacement
sensors (variable reluctance probes) are integrated in the housing of each bearing and are non-
colocalised with actuators. The Input/Output panel gives access to the displacements measured
and enables entering current settings for the amplifiers. Each AMB has one back-up bearing
with a clearance radius of 0.1mm. The shaft is composed of three parts bolted together. A cen-
tral part (diameter: 25mm; length 344mm) with a decentred disc 120mm in diameter and 25mm
long placed at two-thirds of the central part length from the DE side, together with two shaft
ends (50mm of main diameter). The stack of laminated steel sheets is shrunk on each of these
two shafts. The total rotor length is 645mm. The rotor mass is 6.5kg. The rotor is driven by
a 500W electric motor with a maximum speed of 12,600rpm. Power transmission is provided
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by a flexible coupling. The operating speed range used in this work is 0 to 9,500rpm, which
includes two first rigid modes. The speed of the rotor is monitored by using a speed sensor
placed close to the motor.

Figure 1. Experimental test rig.

The test rig was mounted on a shaker that has 6 real-time pilots able to reproduce various
combinations of solicitations along the 3 axes (translations and rotations) with a maximum mass
of 450 kg in a range [0-250] Hz. Sine, random, shock excitations or replication of signals
previously recorded and with a maximum acceleration of 10g, ± 50 mm in translations and ±
4 degrees in rotation. The rotor at rest was subject during 5 seconds to two cases of excitation:
0.3g at 20 Hz, and 1.1g at 20 Hz. Only the last case led to contact between the rotor and
the touch-down bearings (TDB). The characteristics of an augmented PID were determined
as a function of the dynamic behaviour and the number of modes included in the operating
conditions. Also, the stiffness was chosen low and the damping was concentrated around system
natural frequencies (Figure 2).
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Figure 2. Controller damping and stiffness.

3 RESULTS

The displacements measured are presented in Figure 3. It can be noticed that the PID operated
efficiently since the rotor was still controlled even after the contact with the TDB.

4 CONCLUDING REMARKS

The study was devoted to the assessment of the dynamic behaviour of a rotating machine under
sever excitations. The aim was to check the ability of the developed control strategy to maintain
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Figure 3. Displacement of the rotor subject to 0.3g (left) and to 1.1g (right).

the rotor in operation. In this paper only first results are presented, and it could be seen that the
controller was able to maintain the rotor in operation.
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ABSTRACT 

 
We investigate in this study the dynamic behavior of planetary gear systems induced by the time-
varying mesh stiffnesses of the sun-planet and the ring-planet meshes. These internal excitations 
are of parametric kind and induce, under stationary conditions, multi-frequencial responses. These 
responses lead to parametric resonances when natural eigenmodes defined from the mean values 
stiffnesses are excited.  In order to compute the planetary gear dynamic responses, a previously 
defined iterative spectral method is introduced and extended to this context, significantly saving 
computation times. By expanding the solution in the modal basis computed from the mean 
characteristics of the system, this method is derived in the frequency domain and directly provides 
the spectrum of the response.  
As an example, a simple single stage planetary gears multi-degree-of-freedom modelling is built. 
Eigenmodes, dynamic transmission errors and dynamic mesh forces are computed and analyzed. 
Finally, comparisons with the Runge-Kutta time integration scheme is performed to demonstrate 
the method validity.      
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1 INTRODUCTION 

Planetary gear systems form a reliable and efficient way to design compact power 
transmissions with high gear ratio. Consequently, these transmissions are very popular from wind 
turbines to home automation applications, or again automatic gearboxes, to only cite few cases. 
Concerning the NVH performance, their noise characteristics remain often unacceptable, especially 
in view of the more restrictive standards in the context of reduction in pollutant and greenhouse gas 
emissions. In particular, demand is now strong for reducing weight while respecting the 
vibroacoustic performance and reliability. In this context, it becomes of great importance to 
introduce advanced simulation tools applying right to the design stage. Whining noise of planetary 
gears is especially addressed in this study. This dominant noise results from the dynamic behaviour 
of the gears induced by the static transmission errors. These main excitation sources at each meshing 
result from the teeth deflection and manufacturing errors. In the context of dynamic modelling, they 
are introduced as displacement periodic excitations and internal parametric excitations (meshing 
stiffness fluctuations). Particularity of the planetary gears, these last induce couplings between the 
multiple meshings. Consequently, equations of motion projected into the modal base built from the 
time averaged mesh stiffness remains coupled. The principal aim of this study is to demonstrate the 
capability of a previously introduced iterative spectral method [1-2] to treat the special case of 
planetary gears. This method is devoted to compute the stationary dynamic responses of 
parametrically excited systems with time-varying characteristics, such as stiffness, subjected to 
stationary deterministic or stochastic external excitation. The case of standard cylindrical gears are 
well mastered with this method compared to experimental results [3-4]. 

 

2 DYNAMIC MODELLING 

Consider a single stage planetary gear, we introduced a lumped dynamical multi-degree-of-
freedom model similar to that introduced in [5]. This planetary gear is composed of 3 planets. By 
neglecting the centrigugal and Coriolis forces, the matrix equation of motion is given by 
 
 𝐌�̈� + 𝐂�̇� + ∑ 𝑘𝑗(𝑡)𝐑𝑗𝐑𝑗

𝑡𝐱6
𝑗=1 = ∑ 𝑘𝑗(𝑡)𝐑𝑗𝐑𝑗

𝑡𝐱𝑠
6
𝑗=1  (1) 

 
In this equation 𝐌 and 𝐂 are respectively the mass and damping matrices, 𝐑𝑗 is a structural vector 
witch couples wheels through the j-th meshing process, 𝐱 is the dynamic response co-ordinates 
vector, 𝐱𝑠 is the static ones, and 𝑘𝑗(𝑡) is the time-varying meshing stiffness of the j-th mesh which 
represents the internal parametric excitation. Summation over 6 corresponds to the 3 sun-planet  
meshes and the 3 ring-planet meshes. 

By considering the free undamped time-averaged system, we can defined a mean modal basis, 
which appears to be the pertinent basis for describing the parametric resonance phenomena. This 
modal basis is then deduced from the following eigenvalue problem 
 
 ( ∑ 𝑘�̅�𝐑𝑗𝐑𝑗

𝑡6
𝑗=1 − Ω2𝐌 )𝐕 = 𝟎 (2) 

 
where 𝑘�̅� represents the mean time value of 𝑘𝑗(𝑡).  As an example, a typical mode is shown in 
Figure 1. In practice, it is possible also to distinguish the nature of these modes by meshing storage 
energy computation. 
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Figure 1. Typical mode with the modal motion of the planets and the sun. 
 

3 COMPUTATIONAL PROCEDURE FOR THE STATIONARY RESPONSES  

In order to simulate and compute the stationary coupled dynamic responses of the transmission 
model (which are multifrequential), we introduce the iterative spectral method. This method is 
based on the direct computation of the solutions in the spectral domain. To this end the matrix 
equation (1) is rewritten in the modal base as 
 
 𝑑𝑖𝑎𝑔[1]�̈� + 𝑑𝑖𝑎𝑔[2𝜁𝑘Ω𝑘]�̇� + 𝑑𝑖𝑎𝑔[Ω𝑘

2]𝐪 + ∑ 𝑔𝑗(𝑡)𝐫𝑗𝐫𝑗
𝑡𝐪6

𝑗=1 = ∑ 𝑘𝑗(𝑡)𝐫𝑗𝐫𝑗
𝑡𝐪𝑠

6
𝑗=1  (3) 

or 
  
 𝑑𝑖𝑎𝑔[1]�̈� + 𝑑𝑖𝑎𝑔[2𝜁𝑘Ω𝑘]�̇� + 𝑑𝑖𝑎𝑔[Ω𝑘

2]𝐪 + ∑ 𝑔𝑗(𝑡)𝐫𝑗E𝑗(𝑡)6
𝑗=1 = ∑ 𝑘𝑗(𝑡)𝐫𝑗E(𝑠)𝑗(𝑡)6

𝑗=1  (4) 
 
In equations (3,4), 𝐪 = 𝐕𝐱 is the modal co-ordinates vector, 𝐫𝑗 = 𝐕𝐑𝑗 is the modal structural vector 
at the j-th mesh, Ω𝑘 is the k-th natural frequency, 𝜁𝑘is the corresponding modal viscous damping, 
𝑔𝑗(𝑡) = 𝑘𝑗(𝑡) − 𝑘�̅� is the fluctuating part of meshing stiffnesses, E𝑗 = 𝐫𝑗

𝑡𝐪 is the dynamic 
transmission error and E(𝑠)𝑗 = 𝐫𝑗

𝑡𝐪𝑠, the static ones at the j-th mesh. 
To solve equation (4), we introduced an iterative process directly achieved in the spectral domain. 
After several judicious transformations, the iterative process is written as follows 
 
 𝐸𝑖(𝜔)(𝑝+1) = 𝐸𝑖(𝜔)(0) − ∑ 𝑇𝑖𝑗(𝜔)[𝐺𝑗(𝜔)⨂𝐸𝑗(𝜔)(𝑝)]6

𝑗=1  (5) 
with 
 𝑇𝑖𝑗(𝜔) = ∑ r𝑖𝑘r𝑗𝑘𝐻𝑘(𝜔)𝑁

𝑘=1  (6) 
 
 
All the variables are expressed in the spectral domain by Fourier transform, the operator ⨂ denotes 
the convolution product, and 𝑇𝑖𝑗(𝜔) is a function which only depends on the modal characteristics, 
in particular the classical frequency complex response functions 𝐻𝑘(𝜔). 

4 RESULTS 

After ensuring the method validity by comparisons with results obtained by Runge-Kutta time 
integration scheme, we have studied several test cases, including phase shifting effects between 
mesh stiffness fluctuations. As an example, we show in Figure 2 the evolution of the rms value of 
transmission errors versus the mesh frequency, obtained both by the Runge-Kutta method and our 
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Iterative Spectral method. We observe a very good agreement between methods. Further, one 
observes several dynamic amplifications that correspond to parametric resonances. These last can 
be easily interpreted by the knowledge of the spectral contents of responses and the mean modal 
characteristics of the geared system. 
 

 
Mesh frequency (kHz) 

Figure 2. Rms values of Dynamic Transmission Errors versus the mesh frequency (continuous 
lines: Iterative Spectral Method; round marks: Runge Kutta Method).  

 
Finally, results show that the main interest of the iterative spectral method is the very short 

computing time leading to very efficient simulation tools for predicting dynamic behaviour of 
planetary gear transmissions. 

5 ACKNOWLEDGMENTS 

This work has been performed within the LabCom LADAGE (Laboratoire de dynamique des 
engrenages) funded by the French National Research Agency / ANR under the reference number 
ANR-14-LAB6-0003.  

The authors are also members of the LabEx CeLyA (Centre Lyonnais d’Acoustique) funded 
by the French Ministry of Research. 

REFERENCES 

[1] J. Perret-Liaudet, An original method for computing the response of a parametrically 
excited forced system. Journal of sound and Vibration. 196(2):165-177, 1996. 

[2] L. Bachelet, N. Driot, and J. Perret-Liaudet. A spectral method for describing the response 
of a parametrically excited system under external random excitation. Journal of Computational and 
Nonlinear Dynamics, 3(1), 011008., 2008. 

[3] J. Perret-Liaudet, A. Carbonelli, E. Rigaud et al.  Modeling of gearbox whining noise (No. 
2014-01-2090). SAE Technical Paper, 2014. 

[4] A. Carbonelli, E. Rigaud, and J. Perret-Liaudet. Vibro-Acoustic Analysis of Geared 
Systems-Predicting and Controlling the Whining Noise. Automotive NVH Technology. Springer 
International Publishing, 63-79, 2016.  

[5] R. Parker. Analytical characterization of the unique properties of planetary gear free 
vibration. Journal of Vibration and Acoustics, Trans. ASME (121)3 :316-321, 1999. 

 

√𝐸2̅̅̅̅  (μm) sun-planet mesh 

ring-planet mesh 

258



MEDYNA 2017: 2nd Euro-Mediterranean Conference 25-27 Apr 2017 
on Structural Dynamics and Vibroacoustics   Sevilla (Spain) 

 

 
  
 

 
 
 

EXTERNAL DISTURBANCE REJECTION FOR 
COMPRESSORS ON ACTIVE MAGNETIC BEARINGS 

A. Bonfitto, N. Amati and A. Tonoli  
 

Department of Mechanical and Aerospace Engineering – Mechatronics Laboratory 
Politecnico di Torino, Turin, Italy 

Email: angelo.bonfitto@polito.it, nicola.amati@polito.it, andrea.tonoli@polito.it  
 

 
ABSTRACT 

 
This paper presents the experimental results of a feedforward control strategy applied to a 

centrifugal compressor to reject disturbance coming from ground motion. The compressor is used 
for refrigeration tasks in public transport, it has a power of 30 kW with nominal speed of 51000 
rpm and is levitated magnetically by means of cylindrical Active Magnetic Bearings (AMB). The 
proposed control strategy acts in combination with a classical decentralized control, it is 
implemented on a prototype of the compressor equipped with a substitute impeller without 
compression and is validated by means of acceleration tests simulating ground motion. The 
obtained results represents the basis for the future development of the proposed control strategy 
that will combined to an unbalance compensation action to minimize the effects of surge and stall 
of the compressor. 

The paper illustrates the architecture of the machine,  the control strategy and the 
experimental results conducted in laboratory environment and aiming to prove the validity of the 
proposed technique. According to the standards, the control is tested by shaking the system with an 
impulsive acceleration of the duration of 30ms and an amplitude of 5g. The obtained axial and 
radial displacement of the shaft are lower than 0.2mm.  
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1 INTRODUCTION 

Compressors are widely adopted in several industrial processes like manufacturing, 
production lines and oil and gas industry. The main tasks requested to these machines are gas 
transportation and mixing, refrigeration and temperature control. In the last decades scientific 
research devoted many efforts to the development and the optimization of compressor technology 
aiming to improve reliability and performance. The current study is mainly focused on critical issues 
like stall and surge control and to the improvement of the efficiency of the machine. To this end, 
the adoption of active magnetic bearings (AMB) for the support of the compressor shaft witnessed 
a steady growth because of the intrinsic advantages of this technology: the absence of friction and 
fatigue issues, low maintenance allowing the installation in critical and harsh environments, the 
absence of contamination caused by lubricants and the possibility of tuning the suspension 
parameters by means of digital control [1][2]. 

When a compressor based on AMB is adopted for refrigeration tasks in mobile applications 
such as public transport, it is subjected to external disturbance coming from the ground that can 
generate heavy damage to the machine if the rotor comes in touch with the stator. It is important to 
find a control technique allowing the machine to work in safe condition without sacrificing the 
control devoted to the suspension of the shaft and permitting to minimize the clearance between the 
stator and the rotor to optimize the refrigeration efficiency [3][4]. In this paper a feedforward control 
acting in parallel to a classical decentralized control is adopted to reduce the axial and radial 
displacement of the shaft of a compressor with a nominal speed of 51000 rpm and a power of 30 
kW used for refrigeration tasks in public transport. The proposed control technique is applied on a 
prototype of the compressor with an impeller mock up with the same inertial properties of the real 
one. The experimental validation is conducted with acceleration tests simulating ground motion. 
On the basis of this results, the strategy will be refined and used in combination with an unbalance 
compensation strategy to control surge and stall effects in real working conditions. 

 The architecture of the machine, the modelling and the control phases are exposed along 
with the experimental results conducted in laboratory environment aiming to prove the validity of 
the proposed technique. According to the standards, the control has been tested by shaking the 
system with an impulsive acceleration of the duration of 30ms and an amplitude of 5g. The reported 
experimental results show that maximum axial and radial displacement of the shaft are lower than 
0.2mm.  

2 ARCHITECTURE OF THE SYSTEM AND CONTROL DESIGN 

The control strategy is tested on a prototype of the compressor supposed to be used for 
refrigeration and temperature control in public transport. Figure 1 reports the lateral cross section 
view of the machine. The shaft (17) is supported by means of cylindrical active magnetic bearings 
with two radial (4, 5, 12 and 13) and one axial actuator (11), the displacement is measured by five 
eddy current displacement sensors (1 and 3), an impeller mock up (14) is used in the place of the 
real one. An electronic control unit is responsible of the acquisition of displacement and current 
measurements and of the generation of the references for the power electronics adopted to drive the 
actuators.  

The magnetic levitation is achieved with a standard decentralized control strategy based on 
two embedded control loops: the inner PI to control the current in the coils and the outer PID to 
control the position of the shaft. The rejection of the external disturbance is obtained by means of a 
feedforward control signal summed to the command of the external position controller as illustrated 
in Figure 2. The measured acceleration of the ground is filtered with an action that is equal to the 
inverse of the actuation dynamic.  
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Figure 1. Lateral cross section view of the compressor. 1: Axial position sensor. 2: Lower 

landing bearing. 3: Radial position sensor. 5: Lower radial actuator, rotating part. 6: 
Lower radial actuator, static part. 7: Mechanical spacer. 8: Motor cooling system. 9: 

Electric motor, static part. 10: Electric motor, rotating part. 11: Axial bearing support. 12: 
Axial bearing. 13: Higher radial actuator, static part. 14: Higher radial actuator, rotating 
part. 15: Impeller mock-up. 16: Stator body, lower part. 17: Lower nut. 18: Shaft. 19: 
Stator body, central part. 20: Shaker slip table. 21: Compressor bracket (4 brackets in 

total). 22: Higher nut. 23: Stator body, higher part. 24: Higher landing bearing. 25: Volute. 
 

 

 
Figure 2. Control scheme. 

3 EXPERIMENTAL RESULTS 

The experimental tests are carried out to test the isolation from ground motion in operating 
conditions. The excitation is simulated by means of a shaker providing a profile of acceleration 
accordingly to the standards (Figure 3) where the peak A is equal to 5g and the duration in time is 
30ms. 

 

Figure 3. Acceleration profile. 
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Figure 4 shows the results obtained for the tests along axial (a) and radial direction at 0 rpm (b), 
35000 rpm (c) and 51000 rpm (d). The maximum displacement is lower than 0.2 mm along both 
directions. The upper plots report the acceleration in g while lower plots show the displacement. 
Since acceleration of 5g when only PID control is running leads to the instability of the system, no 
plots are available when feedforward action is off. 

 

Figure 4. Experimental results. a) Axial direction at 51000 Rpm. b) Radial direction at 0 
rpm. c) Radial direction at 35000 rpm. d) Radial direction at 51000 rpm. Solid line is x-axis and 

dashed line is y-axis in the lower plots of figures b), c) and d). 

4 CONCLUDING REMARKS 

A feedforward control technique has been presented to control ground motion on a compressor for 
refrigeration tasks in public transport. The control runs in parallel with a standard decentralized PID 
control devoted to magnetic suspension. The control architecture has been validated in the case of 
excitations coming from the ground when the machine is equipped with a substitute impeller 
without compression. Accelerations along longitudinal and transversal directions with a peak of 5g 
and a duration of 30ms have been provided with a shaker and the maximum recorded displacement 
are lower than 0.2mm. The obtained results represents the basis for the development of the control 
strategy that in the future will be used in combination with an unbalance compensation action to 
minimize the effects of surge and stall of the compressor in real working conditions.  
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ABSTRACT 

 
Power generation, gas compression, vacuum generation, and machining are example applications 
for spinning rotors. Higher power density is enabled by higher rotational speeds. Rotors levitated 
by active magnetic bearings (AMBs) allow such increase in speed because they have low torque 
resistance and the rotor dynamics are controllable. However, abnormal overload events or 
transient faults may give rise to a loss of functionality and cause a rotor to come into contact with 
emergency touchdown bearings (TDBs). The rotor may experience a number of responses ranging 
over bouncing and rubbing, which may result in excessive vibration at a level that may cause 
structural damage to the system. An understanding of the mechanisms that drive these persistent 
nonlinear contact dynamics is important if control strategies to restore contact-free rotor 
levitation are to be designed and implemented with confidence. This paper will explore the options 
that are available for AMBs and active TDBs.  
 
 

263



MEDYNA 2017  25-27 Apr 2017, Sevilla (Spain) 
 

 

2 

 

1 INTRODUCTION 

Contact-free operation of rotor/active magnetic bearing (AMB) systems is well known [1]. 
However, problems may arise when rotor/stator contact occurs and these are reviewed in [2] with 
respect to the rotor dynamic responses. In AMB-levitated rotor systems, rotor drop is a clearly 
defined problem. In the absence of AMB functionality, the TDB support characteristics are of 
importance in achieving a soft landing and acceptable rotor dynamic response during rundown [3]. 
However, contact induced rotor dynamics may also occur when the AMBs are still functional, hence 
active control options are also available. A typical layout in Figure 1 shows the AMB coils for the 
vertical axis, through which electrical currents (𝑖𝑈, 𝑖𝐿) may be adjusted for levitation control of the 
rotor and to maintain clearance between the rotor and the AMB. Excessive external influences or 
faults conditions may cause the rotor to make contact with a touchdown bearing (TDB), which is 
in place to prevent excessive rotor dynamic excursions. When the rotor is in contact with the TDB, 
radial (normal) and tangential (friction) forces are introduced into the rotor dynamic behaviour. 
These forces may be large and may become persistent and undesirable [4, 5]. If control functionality 
is still available from an AMB or an active TDB, it may be possible to restore the rotor to a desirable 
contact-free state.  
 

2 PERSISTENT ROTOR CONTACT MODES 

The linearized equation of motion of a rigid rotor (Figure 1) in an AMB having stiffness and 
damping properties is  

                                
rr

cti

r

u
nn c

zi
m
fe

m
fzzz )1(2 2 PZ[Z �� �� :��� ,                    (1) 

where rr iyxz � is the inertial frame complex displacement, rc is the radial clearance, P  is a 
Coulomb friction coefficient, and uf  is the unbalance. In an idealized representation, contacts 
may be represented by a series of delta function impulses. Between contacts ( 0 cf ) analytical 
solutions may be sought that achieve repeatable bounce like motions before and after each 
contact (see Figure 2, left contact orbit B). Viewed in a synchronously rotating reference frame, 

ti
rr zeivuw :� � ,                     (2) 

orbit B has the loci shown in Figure 2 (right). Figure 2 also shows the completely contact-free 

Figure 1. Spinning rotor within an AMB showing possible contact 
with a TDB. 
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Figure 2 thus demonstrates an example of bistable responses driven by rotor unbalance. In orbit A, 
the rotor whirls in a circular contact-free condition within the clearance space of the AMB. In orbit 
B, a bouncing mode solution is also possible. In the left hand side diagram it is seen that the response 
of orbit B is lagging slightly behind the rotating unbalance vector, while the orbit A is almost in 
anti-phase with the unbalance vector. This effect is caused by the ‘hard’ boundary of the TDB, as 
represented by the delta function contacts. The phases of the orbits are seen more clearly in the 
rotating frame view of the right hand side diagram in which orbit A is represented by a single point 
and orbit B becomes a small loop on the TDB boundary. 
 Numerical simulations may also be undertaken in which the contact forces are represented 
in terms of Hertzian contact stresses and the TDB is resiliently mounted (Figure 1). These will be 
more representative of practical applications. Further, the TDB may be simulated in an active mode 
by imposing displacements ),( cc yx  through the resilient mounts. Nonetheless, the idealized contact 
solutions may be used to guide understanding and decide upon appropriate control action. 

Persistent contact is problematic since the contact force levels are typically large and in 
excess of the magnitude of the unbalance force vector. These may cause structural damage to the 
TDB and/or the rotor. Furthermore, frictional forces at a contact zone will be high, which will 
induce significant thermal inputs to the TDB and the rotor, resulting in thermal distortion and 
thermal bending, respectively. 

3 OPTIONS TO RESTORE CONTACT-FREE LEVITATION 

In this paper, two open-loop feedforward control actions are considered for AMBs and, if available, 
active TDBs. Their feedforward nature limits any problems that may arise from closed loop 
feedback. 

3.1 Using AMB feedforward action 

In this case, synchronous forces are applied through the AMBs to compensate for the unbalance 
that is driving the rotor dynamic contact. The compensating forces must have the appropriate 
amplitudes and phases so as to minimise the contact forces, preferably to zero. The control forces 

Figure 2. Bistable contact-free (A) and bouncing contact (B) motions in  
inertial (x, y) and synchronously rotating (u, v) frames of reference. 
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may be applied in a ramped manner to reduce transient responses and achieve a smooth re-levitation 
of the rotor. 

3.2 Using TDB feedforward action 

In this case, synchronous control forces are applied to the TDBs in order that the contact forces 
between the rotor and the TDB may be influenced and minimised. Figure 3 shows an example of 
such control action that restores contact-free levitation. 
 

4 CONCLUDING REMARKS 

This paper presents the options for restoring contact-free operation in AMB-levitated rotor systems. 
Without control, the contact rotor-dynamics may persist and become damaging for the components 
in the system. It is demonstrated that if functionality of the AMBs or active TDBs exists, appropriate 
control action may reduce contact forces to a level at which they become unsustainable and contact-
free levitation follows. 
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Figure 3. Active TDB motion (red) to induce a rotor out of a persistent rub contact mode 
(blue). Viewed in an inertial (x, y) frame of reference. 
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ABSTRACT

Active magnetic bearings (AMBs) present a host of potential advantages over other bearing
types in the design of rotor systems. An important category of such advantages is the ability to
use the active nature of AMBs to influence the rotor-dynamics, and thus to control and reduce
vibration exhibited by a rotor. The majority of work on this topic employs the same basic
system geometry: the magnetic bearings are external to the rotor, and they tend to be large and
rigidly mounted. In some situations it may be necessary or desirable to use a more compact
arrangement, with AMBs mounted inside a hollow rotor, and mounted on a flexible structure. A
system with such a topology is considered in this paper.
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1 INTRODUCTION

The use of magnetic bearings for vibration control has been an active field of research for over
half a century, and a number of authors have undertaken to summarise the progress in the field
at various stages with significant review papers [1–3].

Throughout this period, however, the fundamental geometry of AMBs and of the overall
rotor systems they are employed in has remained relatively stationary. From the use of magnetic
bearings as active magnetic dampers (AMDs) [4–6] to the development of competent and effi-
cient vibration controllers [7, 8], AMBs have tended to be large, externally and rigidly mounted
components. However, in systems where space on the rotor surface or in its vicinity are limited,
it may be advantageous to employ an alternate system geometry. In particular, the prospect of
mounting magnetic bearings within a hollow-shaft rotor is substantially interesting. In many
cases, such a geometry dictates that the structure supporting the AMB will be flexible, which
complicates the system dynamics, as well as raising interesting new possibilities for vibration
control.

2 TEST RIG

To allow an experimental investigation into the behaviour of a rotor system with flexibly-
mounted, internal-stator magnetic bearings, a customised test rig has been constructed. A
schematic showing the fundamental nature of the test rig is shown in Figure 1, while a pho-
tographic view of the finished test rig is shown in Figure 2.

The rotor is constructed with a variable cross-section, with large diameter, hollow ends,
and a thin and solid centre. The thin section is present purely to lower the rotor’s natural
frequencies to allow supercritical speeds to be reasonably achievable in the laboratory. The
magnetic bearings (marked “Active Coupling” in Figure 1) are mounted at the end of cantilever
beams. In this example, the magnetic bearings are not used for levitation of the rotor, which is
mounted at its ends on traditional passive bearings. Instead, the magnetic bearings are in place
solely for the purpose of vibration control. In theory, however, the bearings could be used for a
combination of both levitation and vibration control.

Multi-section Rotor Secondary Shaft

Active CouplingRolling-element Bearing

Figure 1: Schematic diagram illustrating layout of flexibly-mounted magnetic bearing test rig

3 CONTROL AND RESULTS

A key challenge is reducing the rotor vibration without exciting the magnetic bearing supports
to vibrate excessively, and especially to avoid the combined vibration of rotor and magnetic
bearing shaft causing contact between the rotor and the magnetic bearing to occur. From a
system design point of view, it is therefore of great importance to ensure a substantial difference
between the natural frequencies of the separate shafts.

2
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Approximate locations 
of internal-stator 
magnetic bearings

Approximate locations 
of internally mounted 
eddy current sensors

Figure 2: Photograph of flexibly-mounted magnetic bearing test rig

As the design under consideration uses the magnetic bearings purely for vibration reduc-
tion (and not for levitation), it is possible to only activate the bearings when excessive vibration
behaviour is occurring in the rotor - for example when passing critical speeds.

In terms of particular control strategy, a variety of options are available. With carefully
selected gains, a traditional PD controller can be employed to couple to rotor to the secondary
shafts, thus altering the rotor behaviour. The controller may be devised, for example, to add
stiffness to the rotor, thus shifting its natural frequencies, and therefore critical speeds. An
interesting alternative to this may be not to use a closed loop controller at all, and instead just
apply a bias current to all poles of the magnetic bearings, effectively reducing the rotor stiffness.
An interesting study of such a techniques has been presented by Mahfoud and Der Hagopian [9].

A broader range of options are opened up by considering the use of model based con-
troller for such a geometry. This allows the expression of specific goals; for instance, a con-
troller could be designed to minimise the absolute vibration of the rotor as far as possible, while
allowing the flexible magnetic bearing shaft to vibrate provided such motion will not cause a
contact event. While more complex to design, such control schemes offer powerful capabilities
to a system with flexibly mounted magnetic bearings.

By way of illustrating the capability of such a system topology for reducing vibration,
some results from impulse testing on the rig in Figure 2 are shown in Figure 3. The impulses
are measured by eddy current sensors (four in total) mounted adjacent to the magnetic bearings
on the flexible support shafts. Thus they contain data relating both to the rotor (the target), and
the shafts they are mounted on. The data presented is a Fourier transform of the time responses.
The peaks around 45 Hz pertain to the rotor behaviour, while those around 120 Hz relate to
the support shaft natural frequency. It is seen that the use of PD control in the bearings (3b)
substantially reduces the vibration amplitudes compared to the uncontrolled system (3a), as well
as increasing the frequencies at which they occur. These frequency increases are a result of the
additional stiffness contributed by the magnetic bearings when operated under PD control. The
extent of the frequency shift is governed by the value of the proportional gain. It is also possible
to cause negative frequency shifts, achieved by using the magnetic bearings to add negative
stiffness to the system, as done by Mahfoud and Der Hagopian [9].

4 CONCLUDING REMARKS

An atypical topology for a rotor system using magnetic bearings for vibration reduction has been
presented, involving mounting internal-stator magnetic bearings within a hollow-shaft rotor.
The AMBs are mounted on flexible beams. Options for using such a system for vibration
control are considered, and example results illustrating the potential of such a topology are

3
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Figure 3: Fourier transforms of the impulse response of the rotor system comparing the be-
havour without control (a) and with a PD controller (b)

included.
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ABSTRACT

The Partition of Unity Finite Element Method (PUFEM) is dedicated in standard acoustics to
high frequency problems or large dimensions problems. Its main feature is indeed to capture
several wavelengths per element with a very high convergence rate. The modeling of acoustics
waves in exterior unbounded domains seems therefore adapted for the PUFEM. However non
reflecting boundary conditions are necessary to handle this task. Some analytical boundary
conditions have already been tested with the PUFEM. Here we propose to extend the choice of
possible non reflecting boundary conditions in the PUFEM with the Perfectly Matched Layers
(PML).
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1 FORMULATION

1.1 Non Reflecting Boundary Conditions (NRBC)

The following weak form of the Helmholtz equation is used in the finite element method applied
to acoustics : Z

⌦

(rp · r�p � k2p �p) d⌦ �
Z

�

@p

@n
�p d� = 0 . (1)

It describes the behavior of the acoustic pressure p in a fluid domain ⌦ at an angular frequency
! with a wavenumber k. Here the exterior domain ⌦ is given with rigid boundaries �

r

and
non reflecting boundaries �1. To handle these last boundaries Laghrouche et al. [1] tested and
compared some Non Reflecting Boundary Conditions (NRBC) such as Robin type boundary
conditions, exact boundary conditions (DtN) and approximate NRBCs (Bayliss, Gunzburger
and Turkel - Engquist and Majda - Feng). In the following we propose to extend the choice of
possible NRBCs in the PUFEM with the Perfectly Matched Layers (PML). The idea behind the
PML is to stretch the coordinates in the complex domain to get an absorbing domain. Along the
x-axis for example, a plane wave exp(i(kx�!t)) becomes exp(i(kx̃�!t)) with x̃ = x+if(x).
In the absorbing region of this PML the wave decays exponentially. By choosing also df/dx =
�

x

(x)/!, the attenuation rate becomes frequency independent. Note that the function �
x

(x)
cannot be a simple large constant since it would lead to numerical reflections at the end of the
PML domain. However the larger the value of the integral

R
PML

�
x

(x)dx, the best. In order to
achieve that goal, Bermúdez[2] tried unbounded functions such as

R
PML

�
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(x)dx = +1 and
concluded that the optimal absorbing function was �

x

(x) = c (L
x

� x)�1. In the following we
keep this same function in both directions x and y.

In practice, the complex stretching of our original differential Equation (1) writes :
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1.2 Partition of Unity Finite Element Method (PUFEM) in 2D

The key ingredient of the PUFEM relies on the enrichment of the conventional finite element
approximation by including solutions of the homogeneous partial differential equation ([3, 4]).
In this work, plane waves are chosen for the enrichment. In each sub-domain, the acoustic
pressure is hence expanded as

p(r) =

3X

j=1

Q

(k)
jX

q=1

N3
j

(⇠, ⌘) exp
⇣
ikd(k) · (r � r(k)

j

)
⌘

A(k)
jq

, (3)

where the plane waves amplitudes A(k)
jq

are unknown coefficients and functions N3
j

are the
classical linear shape functions on triangular elements. Points r(k)

j

are the nodes associated
with element V (k). The directions are chosen to be evenly distributed over the unit circle, that
is

d(k) = (cos(✓
q

), sin(✓
q

)) where ✓
q

=
2⇡q

Q(k)
j

, q = 1, . . . , Q(k)
j

. (4)

The number of plane waves attached to each node j = 1, 2, 3 depends on the frequency and the
element size according to the following criteria [5] :

Q(k)
j

= round[kh + C(kh)1/3]. (5)
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Here, h is taken as largest element edge length connected to node j within the acoustic domain
and the constant C is usually chosen to lie in the interval C 2 [2, 20]. This coefficient can be
adjusted depending on the configuration and the expected accuracy.

In the present work, the finite element geometries are defined using standard quadratic
shape functions on triangular elements :

r(k)(⇠, ⌘) =
6X

j=1

N6
j

(⇠, ⌘)r(k)
j

, (6)

as this description is integrated in most softwares (here the finite element mesh generator Gmsh
is used). In Eq. (6) extra nodes r(k)

j

for j = 4, 5, 6 correspond to the mid-node of the edges.

2 RESULTS

Figure (1) presents the real part of the pressure radiated at 5000 Hz in a semi-infinite domain
by a point source located at 5cm above an infinite plane. The acoustic domain spans over a 2
meters square while the added PML has a thickness of 0.5m. The result, obtained with an error
L2 lower than 5% compared to analytical results, shows the good efficiency of the PML coupled
to the PUFEM.

Figure 1: Point source radiating in a semi-infinite domain. From left to right : PUFEM mesh,
real part of the pressure.

Figure (2) presents the real part of the pressure radiated at 1000 Hz in a semi-infinite
domain by an imposed harmonic displacement over a circle. The acoustic domain spans over
a disk of radius 5 with an included 0.5m thick PML. This result is an other illustration of the
good efficiency of the PML coupled to the PUFEM.

3 CONCLUSION

In conclusion the stretching in the complex domain of the acoustic problem in order to create
an absorbing layer called a PML works well with the PUFEM. It offers an other way to model
non reflecting boundary conditions in the PUFEM, easy to implement in any configuration. The

3
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Figure 2. Imposed displacement - Radial PML for R 2 [2.5; 5] .

PUFEM coupled with the PML offers hence an efficient tool to model the propagation and the
scattering of acoustic waves at high frequency in exterior problems of large dimensions.
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ABSTRACT 
 

Spacecrafts are submitted to high levels of vibrations during the launcher flight. Broadband 
frequency loads are induced by three major environmental flight events: the lift-off with severe 
acoustic pressure from the jet, the transonic phase with turbulent pressure load associated to sonic 
shock waves and the separation of last stage followed by spacecraft separation from pyrozip 
devices. Long before the first technological flight of new launch vehicle, margins of safety against 
previous vibroacoustic environment are predicted from combinations of numerical models and tests 
leading to more robust diagnosis and better qualification process of spacecraft equipment 
vibrations. Several examples of applied methodology are reviewed and discussed. 
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1 INTRODUCTION 

Launch vehicle loads are unsteady, random or transient with frequency spectra extending to 100 
kHz for shocks and to 8 kHz for acoustic loads. The spacecraft so-called payload is protected during 
the atmospheric phase by the fairing, the launcher nose. The fairing itself has to bear the external 
loads from previous events and is carefully designed for this mission. As flight events are difficult 
to simulate on ground, spacecraft is submitted to specific environmental testing expected to 
envelope the actual flight loads. On-ground qualification tests generate safety margins to flight 
operating conditions. Margins of only 4 dB are taken in acoustic qualification tests of full payloads 
and are generally performed in large high-performance reverberant chambers to insure high degree 
of diffusion in the acoustic sound field. Equipment components are tested on shakers with 
appropriate vibration levels derived from a chain of calculation and tests on launch vehicle subparts. 

For shock events, specific separation tests are performed between the spacecraft and its last-
stage adaptor or the last stage itself. At component level, equipment is tested on shock machines 
based on load specifications written in term of Shock Response Spectrum (SRS). Transonic phase 
is generally qualified by acoustic test when proven by numerical simulation. 

As testing environment differs from flight, evaluation of the actual effective safety margins 
may conveniently be estimated from numerical modeling. When confident, theoretical modeling is 
easier and cheaper to handle than full-scale tests. The confidence in calculated outputs is 
nevertheless a long term approach. First, knowledge has to be collected on the rocket environment 
for generating inputs to the calculation. Second, calculation methods have to be entirely controlled 
and approved. Selected calculation methods for acoustic environment at lift-off are mesh-based 
Boundary Element Method (BEM) for the low frequency range and Statistical Energy Analysis 
(SEA) for the high frequency range. For shock response simulation, time history simulation is 
required for predicting SRS outputs. Prediction methodology is nevertheless very similar: Finite-
Element structural analysis for low frequency and SEA specific solver for managing fast transient 
events in high frequency range. For mid-frequency, methods may be hybridized in various ways. 

In next paragraphs, highlight on applied methodologies is put through series of examples 
taken from the development program of Ariane European launch vehicle family. 

2 VIBROACOUSTIC PREDICTIONS AT LIFT-OFF 

2.1 Ariane Fairing and Internal Payload volume random responses 

Figure 1 (left) shows the European launch vehicle Ariane 5. The fairing is the top external shell 
protecting the payload during the atmospheric part of the flight. The fairing is jettisoned as soon as 
the launcher leaves the earth atmosphere as shown in Figure 1 (right). During the atmospheric phase 
of the flight, two major events are dimensioning the payload random-vibration environment.  

First, at lift-off, the rocket engines generate high Sound Pressure Level (SPL), increased by 
ground reflections and jet impact on launch table. For the fairing, this noise field is viewed as set of 
traveling acoustic waves exciting its structure and penetrating inside the payload volume inducing 
strong vibrations with frequency content up to 5 kHz. Around the launch vehicle, during a few 
seconds after ignition, acoustic pressure levels are rising between 180 dB near the engines down to 
150 dB in the vicinity of the fairing and are quickly vanishing with altitude as soon as the vehicle 
is far enough from ground reflections. This fall is emphasized by the downward orientation of the 
directivity lobe of emission of the jet plume as its deflection decreases further and further from 
ground. 

Second, when the launcher crosses the sound wall (transonic phase), the fairing is again 
strongly excited by shock wave attached to nozzle and by accompanying turbulence. To predict 

276



MEDYNA 2017  25-27 Apr 2017, Sevilla (Spain) 
 

 

3 

 

these two major events in term of acoustic pressure level around payload, the source (i.e. the 
external wall pressure applied to the fairing) has to be known. These levels are determined all along 
the development program through series of ground testing and numerical simulations. Lift-off 
acoustic loads are experimentally determined using motorized-scaled model of rocket engine 
(1/20th scale for Ariane 4 and 5-cf. Figure 4) and measurements on launch facilities for first flights 
of the new rocket. Wind tunnel tests are performed for transonic loads. 

They are followed by numerical simulations based on measured data as extrapolations are 
required for predicting full-scaled results. The spatial and time correlations of the acoustic field 
have also to be investigated as the sound field is unsteady with fast changing frequency content.  

 

 
 

Figure 1. Left: Ariane 5 lift-off (Flight V209); right Fairing separation from Ariane 5 last stage 
when leaving earth atmosphere.  

2.2 Prediction of Ariane 4 vibroacoustic environment 

For predicting lift-off internal acoustic environment around the payload, the actual surrounding 
acoustic field may be idealized as an equivalent steady-state diffuse random noise. A diffuse sound 
acoustic field is made of traveling waves impacting the structure in all possible directions. Diffuse 
field is convenient as an input to vibroacoustic calculation for covering all possible ways an acoustic 
wave may enter the fairing volume. Assuming diffusion of acoustic and vibration fields at lift-off 
makes possible to predict responses using SEA energy-based method. 

SEA prediction method was initiated by R. H. Lyon and G. Maidanik in 1962. It is typically 
applicable to the calculation of equipment responses of payload panels within a reverberant 
chamber or for estimating in-flight rocket vibrations. SEA assumes conservation of vibrational 
energy between the various parts of the rocket under dynamic loads. SEA is a valid method for the 
high frequencies because the power flow exchange relationships are assuming dynamic weak 
coupling between the "subsystems", a natural evolution of the coupling when frequency increases. 
Reversely SEA is losing accuracy and validity when applied in too low frequency domain. Because 
fairing loads are random with broadband frequency content, deterministic numerical simulations 
are at least difficult and in practice not possible for covering the required frequency range and SEA 
was at beginning of 80ths the only method able to deliver consistent predictions for this type of 
application. 

The author joined the Ariane 4 European development program in 1984. The program was 
already well-advanced. Ariane 4 introduced series of innovations in term of design of the upper part 
(Figure 2-Left): a lighter structure with sandwich cross section made of two orthotropic carbon-
fiber skins separated by an aluminum honeycomb sandwich. There were two separate payload 
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compartments (fairing on top and SPELDA below) for two-satellite launch and easier payload 
integration in launch pad facilities. Equipment bay was an external platform located below 
SPELDA. The Fairing was made by two half-shells attached by a clampband and jettisoned after 
atmospheric flight (Figures 1 and 2). Bending stiffness of the fairing in circumferential direction 
was three times lower than in axial direction. First breathing dynamic mode of half a shell was set 
at low enough frequency to avoid impacting payload after separation due to amplitude of breathing 
vibration motion. 

 

 
 

Figure 2. Left: Ariane 4 upper part. Right: First benchmark on fairing sound transmission using 
RAYON BEM software in 1985.  

 
The new design, if mechanically very efficient, proved to depredate the acoustic 

environment of the upper part. After scaled-model tests were performed, expected external SPL's 
were known around the upper part within some margin of safety. From this, first SEA predictions 
run by Aerospatiale, the Ariane 4 architect, were showing a general increase of the vibroacoustic 
environment compared to previous Ariane launchers. It showed a potential increase of launcher 
equipment random vibration levels of about 10 to 20 dB as well as noise increase around payloads, 
exceeding environmental specifications used to qualify launcher and payload components. Due to 
novelty of fairing construction, there was no available published references throughout the world 
to confirm the SEA diagnosis and get some trust in predicted numbers. Research studies were then 
engaged to understand the physical causes of this noise increase and for finding any possible counter 
measures if the diagnosis would be confirmed. 

The origin of the noise increase was quickly identified and was due to the conjunction of 
several factors: solid propellant boosters, added to the first stage of Ariane 4, were generating noisier 
environment than previous Ariane versions. Maximum noise levels were lying in the range 200-
500 Hz.  

Unfortunately, the new sandwich fairing structure, stiffer and lighter than the classical 
Ariane 3 ribbed-aluminum structure, was showing acoustic critical frequencies just falling in this 
range. It led to very poor noise reduction in related frequency bands. As sketched in Figure 2 (Left), 
the equipment platform was also cantilevered with respect to the third stage, creating a corner in 
which impinging sound waves at lift-off from were badly scattered. This was generating an increase 
of about 10 dB of external pressure loading the equipment platform. 
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Emphasis was put on numerical acoustic prediction and engineering studies for : 
x evaluating the various contributions to external noise level,  
x mastering causes of uncertainty in the predictions 
x improving the risk analysis knowledge.  

There is a natural variability of the acoustic loads at lift-off due to the unsteady behavior of 
the engine noise, the type of boosters, the size of the payload inside the fairing. For qualifying 
equipment to random acoustic, a margin of + 4 dB is used for all frequency bands between the 
nominal expected level on launch pad and the specification which drives ground test level. 

It was a very small margin in the currently faced situation. Predicting low and mid frequency 
content of internal fairing noise was investigated jointly with M.A. Hamdi [5][8][9][11][12], 
professor at UTC. He had developed during his thesis [2] a numerical kernel based on a new 
variational boundary element formulation (BEM) that was less subject to numerical drawback. His 
code called RAYON incorporated axisymmetrical formulation for coupling the lined-mesh 
structural FEM (Finite Element Method) model of the fairing with internal cavity. In place of 
solving the full 3D fairing-fluid cavity coupled problem, we could solve series of smaller 2D 
problems as CPU and memory was quite an issue in the eighties. 3D-dynamic behavior was 
retrieved by synthesizing series of 2D harmonics responses, for reaching higher frequency range. J. 
P Morand [16] and B. Chemoul from CNES provided the model of the orthotropic fairing structure. 
It was coupled with internal fairing volume and external sound field in RAYON by Hamdi & Co. 
Figure 2 (right) shows the first computation benchmark performed in 1985 with RAYON on a 
simplified model of the fairing. Original plots were in color and of better quality than current copy. 
It was the first time we could see at same time the motion of the structure and the wave patterns of 
exterior and interior sound pressure. This work was extended by developing a more industrial model 
of the Ariane 4 fairing/equipment bay for predicting the interior noise of the empty fairing 
surrounded by diffuse acoustic. This was a simulation of the acoustic fairing test inside reverberant 
chamber performed in the test facilities of Intespace company in Toulouse, cf. Figure 3 (right), after 
the delivery of the first fairing prototype by Contraves Corp., a Switzerland company.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Combined BEM/SEA prediction (left) of the noise reduction of Ariane 4 fairing tested 
in reverberant chamber (right). 

 
The author introduced the method of splitting the calculation of the random response into a 

set of deterministic BEM calculations under fixed grazing plane wave incidences in order to cover 
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all incidences seen in the test chamber and to quadratically sum-up incident-response to recover the 
random response. Under this source specification, model construction and calculations were 
undertaken by Hamdi & Co. In parallel, high frequency SEA prediction from Aerospatiale and 
CNES completed the frequency range of interest. Agreement between predicted and measured 
noise reduction was excellent over the whole frequency range as seen in Figure 3 (left). The 
prediction model was further improved in 1987 to simulate the environment of the first Ariane 4 
flight [11], which was fired the same year.  

The source model was built from a set of acoustic monopoles along the jet line of the Viking 
and booster engines of which power was estimated with the standard NASA jet model [14]. This 
source representation was entered as inputs in a Ray-tracing acoustic model of the ELA2 launch 
pad [7] and SPL outputs were correlated with measured data provided by the 1/20th motorized 
mockup of Ariane 4 (Figure 4). Main expected incidences on the fairing were then retained as inputs 
to new BEM model of Ariane 4 upper part. As this model was intended to be correlated with first 
flight data, payload presence under the fairing was simulated by their rigid body shapes. Figure 5 
provides the resulting predicted/measured SPL at the two microphones position installed in the 
fairing and SPELDA volume of Ariane 4 V401. 

 

 
 

Figure 4 : On left, Motorized scaled-model acoustic test at Le Fauga (ONERA) and on right Ray-
tracing acoustic model for jet radaited noise description with related scaled-acoustic model for 

measuring scattered field from ultrasonic sources (CSTB). M8 was the measured pressure 
reference on the launch pad to calibrate the source model. 

 

       
 

Figure 5. BEM/FEM coupled model and prediction against measured levels of flight acoustic 
levels in fairing and SPELDA compartments at the two in-flight microphone positions combining  

results of BEM/SEA models. 
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In parallel, the author investigated numerically the response of the equipment bay as the 
guidance platform was very sensitive to acoustic levels. Calculation was performed using FEM 
structural model of the equipment bay to which was applied estimated blocked random wall-
pressure to simulate the acoustic loads [3]. Results from SEA modeling driven by Aerospatiale and 
FEM results were in good agreement up to 200 Hz, covering the equipment sensitivity range due 
to internal resonance of the guidance platform. These predictions were confirmed by joint work 
with ONERA supervised by R. Ohayon, [3][16], using a more sophisticated elastoacoustic model 
of the equipment bay coupled to internal cavity (including acoustic internal modes). 

The critical aspect of acoustic vibrations at lift-off was thus confirmed before the first flight. 
After the first demonstration flight, June 15, 1988, criticality of vibroacoustic environment was 
verified. The guidance platform vibration was found at only -2dB from failure level observed in test 
and conformed to predicted values. Extrapolation of future second flight showed negative margins 
of safety due to a noisier booster configuration. A set of counter measures were immediately 
undertaken such as modifying the launch pad to minimize lift-off acoustics, over-qualifying some 
of the equipment and changing the guidance platform to another technology less sensitive to 
vibrations. Despite or because of this troubleshooting, Ariane 4 has been one of the safest launch 
vehicle with a long carrier. 

2.3 Ariane 5 vibroacoustic environment improvement from design stage 

On the new on-going Ariane 5 program starting in 1985, Project team was now well aware of 
acoustic problems arising as soon as these loads are underestimated in specifications.  

Research was then performed for optimizing Ariane 5 noise environment, undertaking noise 
reduction solutions from design stage, acting on both for exterior noise and fairing interior comfort 
for payload passengers, [6][10][12]. 

Thanks to cooperation with ISVR and ESA, acoustic tests were performed on 1/5th scaled 
model of the fairing to investigate orthotropic effect on noise transmission. Pr. F. Fahy developed a 
specific theory for quickly predicting noise transmission for this type of system. The related 
software called PROXMODE was further used by Dornier company, responsible for the 
development of the SPELTRA structure of Ariane 5, located below the fairing and containing a 
third payload. From this work, Dornier developed a specific acoustic treatment to attenuate low 
frequencies in the fairing by means of Helmholtz's resonators spread on internal face of the fairing 
to increase internal absorption.  

Fairing Bending stiffness was also tuned in the circumferential direction to gain a few dB. 
BEM/FEM modeling’s were also more and more useful to calculate exotic noise reduction solutions 
like Helium purge of the internal fairing volume that in theory could reduce interior noise level from 
10 dB as shown in Figure 6. SEA and dedicated analytical predictive models were complemented 
the frequency range [6] [12]. 

  
 
 
 
 
 
 
 
 
 

Figure 6. Helium bag to reducing noise inside fairing. 
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Nowadays BEM predictions are a standard method to design some of the equipment as large 
payload antennas. Capabilities of numerical BEM techniques have also improved in both model 
size and accuracy as shown in Figure 7.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 BEM analysis coupling FEM model of the Ariane 5 to both internal volume and to test 
acoustic chamber and correlation with test (Straco analysis for ESTEC). 

 

3 ACOUSTIC QUALIFICATION OF THE ARIANE 5 VULCAIN ROCKET ENGINE 

3.1 VULCAIN Engine vibroacoustic environment 

Vulcain is the cryogenic engine of the central stage of Ariane 5 launch vehicle. Vulcain is 
surrounded by two solid propellant boosters (the EAP's) and is submitted to their acoustic noise at 
lift-off.  

SPL levels generated by the boosters are around 10 dB higher than the self-noise of Vulcain. 
Noise is also maximum at lift-off in the high frequency range around 2000 Hz. Compared to 
previous Ariane generation of launch vehicle, this new environmental configuration needed to be 
understood and qualified . Specified SPL could not be reached in available reverberant rooms and 
even so, the engine would have been passive not allowing qualification of the equipment. 

Analysis started by developing a theoretical SEA model of the engine to get broadband 
response prediction of acoustic vibrations of the engine. This analysis was completed by 
experimental SEA tests under instrumented-impact hammer to derive damping loss factors and 
coupling loss factors of the major subsystems: nozzle, turbo-pumps, gas generator and exhausts. 

These data were injected in the SEA model at low frequencies to compensate lack of 
accuracy of analytical calculation in the related frequency domain.  

The coupling with the acoustic field was computed analytically from radiation efficiency 
with the dedicated SEA EARTH software, used by the SNECMA and developed by the author. 
EARTH predictions up to 4000 Hz were satisfactorily validated against test of the engine in 
reverberant chamber (Figure 8), [18]. 

 
 
 
 

282



MEDYNA 2017  25-27 Apr 2017, Sevilla (Spain) 
 

 

9 

 

  

 
Figure 8. Test comparisons of VULCAIN SEA model Prediction of acoustic vibrations with SEA 
EARTH software. 

 

3.2 VULCAIN Engine acoustic qualification process 

Prior to undertake the Vulcain acoustic qualification process, a feasibility study started in 
1993. Main idea was to concentrate the acoustic energy of the self-noise of the jet when fired in its 
test stand for increasing sound level on Vulcain nozzle. This increase of noise would simulate the 
noise of EAP’s in the actual lift-off situation.  

We had to prove enough energy could be trapped around the nozzle to reach the required 
qualification noise levels with the available radiated power by Vulcain. Radiated noise was 
predicted from [14].  

The jet plume is split into slices along the flow line. Each slice has a global directivity 
diagram and a given spectrum of radiation efficiency computed from an experimental database of 
measurements on various kinds of engines. Abacuses of radiation of various engines contained in 
[14] were interpolated for covering the regime of cryogenic engines. Due to the scattering of sound 
wave on obstacles and to the presence of the jet guide, some corrections were necessary. As 
sketched in Figure 9, each slice of the plume is radiating in a given frequency band with given 
directivity. High frequencies are radiated by the nearest slices from the nozzle. Low frequencies are 
radiated by the furthest. The prediction of the sound pressure in the near field of Vulcain during a 
standard firing (Figure 10-left) was confirmed against measurement (Figure 9-right). 

 
 
 
 
 
 
 
 
 
 
 
Figure 9. Prediction of Vulcain noise at test stand and related measured SPL.  
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From here, the first part of the jet was shown to be as appropriate source for delivering the 
required amount of diffuse SPL around the nozzle. A reflector structure was designed for confining 
the noise as shown in Figure 10-right.  

Nevertheless, the reflector should have enough aperture for supporting the gas flow, enough 
stiffness for the resulting dynamic pressure and an optimized inclination for improving diffusivity 
and sound amplification. Its design was then performed thanks to 3D acoustic ray tracing model of 
the test stand to optimize its shape and its volume. There was also a risk of inducing local acoustic 
resonances in the fluid volume between reflector walls and nozzle.  

Effect of the incidences on nozzle response was analyzed using EARTH software and the 
implemented reciprocal radiation integral that states the generalized applied acoustic force is 
reciprocal of its radiation efficiency in the direction of the incident wave. 

Effect of depressurization due to jet aspiration was analyzed using a CFD model and the 
pressure outputs were used by EARTH SEA model to predict mean stress in the reflector panels. 

Potential fluid resonances were analyzed using a BEM model with sources calculated from 
the jet model. The work was done in parallel by Acouphen company (ray-tracing optimization of 
the reflector structure), by Straco company and Pr. A. Hamdi for BEM risk analysis, by the Snecma 
(SEP division) for all CFD calculation, reflector construction and test realization and by the author 
for all SEA-based calculation, transducer calibration before the first qualification test and overall 
supervision of the study, [19].  

The first qualification firing test lasted only 20 seconds and confirmed the prediction and 
the design choices as shown in Figure 11 (5 s past ignition) and Figure 12. The reflector was 
amplifying of about 8 to 10 dB the noise on the engine which was found acceptable despite achieved 
levels were 2dB below specification. The sound pressure measured during the lift-off of the 501 
flight confirmed the correctness of the acoustic qualification process as shown in Figure 13. 

 
 

 

  
 

Figure 10. On left standard test stand configuration when firing the VULCAIN engine; on right 
acoustic qualification configuration with the acoustic reflector in position. 
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Figure 11. Firing the engine with acoustic reflector in position. 
 

 
 

Figure 12. Reflector vibration: measured vs 
predicted. 

Figure 13. Comparing qualification test and 
flight 501 measurement. 

4 SHOCK RESPONSE PREDICTIONS 

During the rocket flight, inter-stage separation is commonly performed by pyro-zip devices. 
Payload separation may also involve pyro-zip cut or explosive bolts for final in-orbit injection. 
The cut is highly energetic and fast due to propagation of initial crack at 7000 m/s. It leads to very 
impulsive vibration signals near the separation line with very broad frequency band (above 100 
kHz) and instantaneous levels of several thousands of g's and more. 

Shocks are inducing failures on equipment such rupture of welds, malfunctioning 
electronics…  
The severity of the shock is measured by the Shock Response Spectrum or SRS. The SRS of a 
signal ( )s t  corresponds at a given frequency to the maximal response of a test oscillator with given 
Q-factor having this resonance frequency and excited at base by ( )s t . 

In general, the time history is required to perform SRS prediction in order to know the 
severity class in which the equipment is falling. Depending on equipment location on the launch 
vehicle, the specified SRS is different depending on distance to expected shock source. The payload 
has to be qualified to shocks and the resulting specified qualification SRS is an envelope of various 
shock events. 

Pyrozip shock tests are known to be difficult to predict as the source itself is difficult to 
measure and calibrate. Specifying an SRS does not provide the deterministic signal to use in the 
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qualification test as the SRS transform is not reversible. Due to the high frequency content of shocks 
and the general variance in input description, a statistical approach appears as quite natural to predict 
response. Inside research program driven by the CNES, the author has demonstrated the validity of 
SEA method to predict fast transients generated by shocks. This may look like a paradox as SEA is 
predicting steady-state random vibration responses from forces and modal behavior. 

This is only appearance. Near the source, the propagation is non-modal and response may 
be considered as constrained forced motion. The vibration level of the separation ring is considered 
as the effective source term. Away for the ring, frequency transfer functions on the various panels 
and equipment are close to SEA calculated transfers. Experimental work using shock sources shows 
SEA is given very good trends is term of transfer as soon as the force spectrum is known. 

Nevertheless, SEA transfer has no phase. It is a real-valued transfer, not invertible for 
retrieving time domain response. 

For this, a time history signal profile is allocated to the source: it may be a pre-defined 
simple-shaped force term like a triangle an impulse or half-sine pulse with given amplitude and 
duration. The force term is closely related to the separation process. Pyrozip cuts are delivering 
nearly perfect G �  Dirac's force profile but force has to be converted into injected power in the 
structure. For this a dedicated model to make this conversion is required.  

For a fixed-position G �  Dirac, the conversion factor is known: � � 2, ( , )in i iP Y x f F x f  

where Y is the real part of the driving -point mobility at point ix  and 2F is the square modulus of 
the autospectrum of applied force at ix . In a pyrozip cut, the applied force moves along with the 
crack failure and this propagation speed has a strong influence on injected power in the structure.  
In a separation system using a clampband like in the Ariane 4 fairing, the clampband is first cut at 
both ends by explosive bolts creating a relaxation force moving at speed of sound in the clampband 
material, followed by internal potential energy liberation of the underlying compressed structure 
that was maintained by the clampband. Using Fourier's-based simple modeling of the injected 
power process due to propagating on edge of a continuous system leads to very good predictive 
model as shown in [24]. These models are also appropriate to predict measured responses near the 
source if force is scaled from tests. In example given in Figure 14, SEA-Shock method, as found in 
SEA+ software, is applied to the prediction of a pyrozip separation test of the Ariane 5 upper part. 
The time reconstruction is performed by the LMPR algorithm (Local Modal Phase Reconstruction) 
that develops the response in the receiver over its local analytical modes of vibration and scales it 
to expected real-value transfer function between the source and the receiver provided by the SEA 
model of the various coupled subsystems. The propagation force model for computing injected 
power was tested for the first time in this example study. Second similar example is given in Figure 
15 and was part of benchmark test of SEA-Shock for the European Space Agency. Further details 
may be found in references [20] to [25], especially the application to shock responses of the payload. 
Recent developments implement shock prediction directly using specified SRS as the input to 
simplify the modeling work for launch vehicle passengers that do not know the underlying shock 
source at the origin of the specification. 
 

5 CONCLUDING REMARKS 

Various examples of usefulness of vibroacoustic calculation methods taken in the Ariane launch 
vehicle program have been presented in a way to put emphasis on the calculation scheme. The latter 
improves both risk analysis and engineering knowledge through easier interpretation of measured 
data and extrapolation to unmeasured configurations. BEM and SEA are complementary techniques 
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for covering the full spectral domain of investigated process. SEA method provides a very powerful 
insight into the random vibration behavior of such complex machines even for fast transient like 
separation shocks. This article is complemented by a bibliography related to the treated examples 
where readers will find related theoretical developments that are not presented here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. SEA-Shock prediction of Ariane 5 separation test of the upper part (top synthesized 
and measured time history on the payload, bottom SRS for predicted time signal (blue) compared 

to SRS from measurements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 15. Prediction of Vega launch vehicle upper part: top left, predicted time history on 

payload interface and top right related measurement; bottom predicted vs measured SRS at same 
location. 
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ABSTRACT 
 

The Heating Ventilation and Air Conditioning (HVAC) system of a car has to provide air flow to 
ensure the passengers comfort regarding the temperature inside the vehicle cabin without 
damaging the acoustic environment. The acoustic sources are mainly produced by the blower and 
by the interaction between a low Mach number flow and the elements located in a duct. A 
research program CEVAS was conducted under the leadership of Valeo to develop a tool to 
design low noise car HVAC. The acoustic laboratory of the University of Technology of 
Compiègne (UTC) was in charge of the experimental and theoretical characterization of the 
aeroacoustics sources. With the experimental 2N-ports method, measurements of the scattering 
matrix and of the aero-acoustic power spectrum of the aero-acoustic sources are performed. The 
existence of fluid-resonant feedback mechanisms responsible for high level tones radiated sound 
power are identified and discussed for a butterfly flap and two diaphragms in tandem, the latter 
representing the association of HVAC elements. 
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ABSTRACT

Railway noise is a critical issue concerning environmental noise. At the wheel/rail contact
point, both the wheel and the track are dynamically excited and vibrate together to emit the
well-known rolling noise within a frequency range comprised between 100 Hz to 5000 Hz.
The point receptance of the rail is an important quantity to accurately predict wheel-rail noise
emission. The goal of this paper is to compute the dynamic behaviour of an heterogeneous
railwaytrack using a biperiodicity method on a heterogeneous unit cell. A coupling between the
Finite Element Method (FEM) and the Wave Finite Element Method (WFEM) is made to model
all kinf of heterogeneities along the track. An example is applied by modelling the heterogenities
as elastic supports, an external force is applied inside the unit cell and the response gives good
agreements with experimental results from litterature.
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1 INTRODUCTION

Railway noise is a critical issue concerning environmental noise. At the wheel/rail contact
point, both the wheel and the track are dynamically excited and vibrate together to emit the well-
known rolling noise within a frequency range comprised between 100 Hz to 5000 Hz. The track
is made of a rail supported by an elastomeric pad, a sleeper and a damp resilient ballast layer.
The point receptance of the rail is an important quantity to accurately predict wheel-rail noise
emission. The theory of periodicity developed by Mead [1] has been widely used to compute the
response of heterogeneous infinite railwaytracks [2] i.e which are periodically supported. His
theory allowed the use of finite elements [1, 3] to describe the dynamic behaviour of infinite
periodic structures with arbitrary-shaped sections.

In this paper, the dynamic behaviour of an heterogeneous railwaytrack is computed using
a biperiodicity method [1], through a coupling between the Finite Element Method (FEM) and
the Wave Finite Element Method (WFEM) [4]. This coupling allows the use of all kinds of
heterogeneities along the track. The principle of the WFEM is first recalled, then the forced
response is computed inside a unit cell by using a biperiodicity method.

2 MODELLING APPROACH

2.1 The Wave Finite Element Method for periodic structures

FIGURE 1. Displacements and forces applied on a unit cell of length le

The periodic structure is an infinite series of unit cells coupled with nc degrees of freedom. The
coupling coordinates are QL QR and the coupling forces F L F R. The dynamic stiffness matrix
D, assembled with the finite element method, can be condensed [3] by expressing through a
matrix inversion the internal coordinates Qi in function of the coupling coordinates such as :


D

LL

D
LR

D
RL

D
RR

� ⇢
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Q
R

�
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⇢
F
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F
R

�
(1)

The use of the periodicity principle [3? ] leads to a generalised eigenvalue problem which gives
a set of 2nc couples (⇥j, ⇤j) for each frequency. ⇥ represents the waveshape basis splitted into
waveshapes displacements ⇥q and waveshapes forces ⇥f . The eigenvalue ⇤ is associated with
the propagation constant � and the periodic lenght le of the unit cell such as [1, 3] :

⇤
j

= e�

j
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e ⇥
j

= [⇥q
j
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]T (2)

The basis can be splitted into positive propagative direction if |⇤j| < 1 associated with nc

⇥+ = [⇥+

q ⇥+

f ]T and into negative propagative direction if |⇤j| > 1 with nc ⇥
� = [⇥�

q ⇥�
f ]T .

The forced response of a periodic structure can be written as a sum of these waves [3].

2.2 Computation of the forced response using a biperiodicity method

The periodicity theorem is applied on a 0.6m length cell (named Unit Cell I) which represents
the distance between two elastic supports of a railway track. As reminded in the previous sec-
tion, this cell needs to be condensed at its coupling interfaces. A biperiodicity method [1] is

2
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used to condensate the homogeneous part (made of several slices of the rail named Unit Slice ),
it consists in expressing the condensed dynamic stiffness matrix of this part thanks to the wave-
shape basis [3]. The heterogenous parts (which can contain the elastic supports) are modelled
with two FEM parts and are coupled with the homogeneous part [4]. Unit cells I are associated

FIGURE 2. Waves inside and outside a discretized unit cell I made of a FEM-WFEM coupling

with the waveshapes ⇥ of amplitudes #, unit slices are associated with the waveshapes � of
amplitudes  and with the eigenvalue � (such as |�| > 1). The displacements and the forces
inside the internal waveguide can be written as a sum of infinite waves  inf i.e waves propaga-
ting in an infinite structure and of reflected waves  on the boundaries. The modal waveshape
amplitude  inf can be calculated as [1] :
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inf
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inf
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��f

� ��f
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F
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The numbers of unit slices on the left n1 and on the right n2 of the external force are such
as n1 + n2 = n. The displacements q(k)

L and the forces f (k)
L of the unit slice k inside the

homogeneous part and Q(1)
L F (1)

L those of the unit cell I interfaces can be written as :
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The dynamic stiffness matrices of the A and B FEM parts are noted DA DB, the dynamic
equilibrium on the four interfaces (see Figure 2) gives after some rearrangements :
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The first two lines of Equation (7) are the coupling between the heterogeneous parts and the
homogenous one, the last two lines are the coupling between the heterogeneous parts and the
semi-infinite structures.

3
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3 RESULTS

The method is applied on an heterogenous railway track periodically supported. The rail section
is meshed with linear hexahedral elements, the 0.6m length cell is divided into 60 slices i.e a
1cm elementary mesh. Elastic support parameters are taken as given by L.Gry [5]. The Figure
3(a) represents the mobility of the track due to an external vertical force applied at the middle of
the unit cell I. The simulation gives a good correspondance with experimental results from [5]
and well reproduces the periodicity effects. The Figure 3(b) represents the receptance along an
half-track at the pinned-pinned frequency (1090Hz) which appears when half the wavelength is
equal to the distance between supports.

(a) (b)

4 CONCLUSION

In this paper, a method to compute the response of a heterogeneous periodic structure due to
an external force applied in a unit cell has been proposed. It uses a FEM-WFEM coupling to
model all kinds of heterogeneities along the waveguide. The method has been applied on an he-
terogeneous railway track laid on elastic supports and gives good agreements with experimental
results.
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ABSTRACT 

 
Acoustic equivalent source models play an important role in the automotive NVH design process. 
Such models represent the sound radiated by an engine e.g. with a set of point sources distributed 
over the engine’s surface. These models can be used in combination with either measured or 
computed Noise Transfer Functions. This paper presents an investigation of engine noise radiation 
using a novel hybrid technique that allows the determination of surface equivalent sources. The 
method is based on the combination of up-to-date measurement techniques and a numerical Inverse 
Boundary Element Method (I-BEM). Starting from the measurement of the sound field surrounding 
a radiating object , the noise sources on the object’s surface are identified using the I-BEM 
technique. This method is applied to a Mercedes-Benz A-class engine, in order to investigate its 
vibrational behaviour and predict the sound levels in the far field. Prior to the application to the 
real engine, the technique was tested on an engine mock-up equipped with six independently driven 
volume velocity sources. In this setup, the source positions as well as their volume velocities and 
time correlations are well known. The known source positions are well identified by the software. 
Good agreement is also obtained on farfield. microphones, both for the mockup and for the real 
running engine. 
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ABSTRACT 
 

The objective of this conference is to present the vibroacoustic approaches on Ariane launchers. 
Early in the design development of the Ariane 5 launcher, it was anticipated that the acoustic 
environment would be a severe case load. Consequently, very soon, noise reduction means have 
been investigated. 
This conference will address: 
x The acoustic environment experienced by the launchers lift-off and during flight ascent and the 

work undertaken to reduce noise surrounding the ARIANE 5 launch vehicle and the noise inside 
the Fairing on the one hand. The reduced scale test to characterize the lift-off noise and to 
investigate potential noise reduction means, the Fairing full scale acoustic test are presented, 

 
x And the methods used to estimate the vibroacoustic response of launch vehicles on the other 

hand. 
Finally, perspectives in the field will be presented. 

 

 

296



MEDYNA 2017: 2nd Euro-Mediterranean Conference 25-27 Apr 2017 
on Structural Dynamics and Vibroacoustics   Sevilla (Spain) 

 

 
  
 

 
 
 

Diffuse field loading of space structures - modeling and test 
 

Bryce Gardner1 
 

1ESI North America, Inc. San Diego, USA 
Email: Bryce.Gardner@esi-group.com 

 
 

ABSTRACT 
 

This paper presents a comparison of different modeling approaches for honeycomb panel 
structures and a simplified satellite box. The problem at hand is the prediction of the response of 
these structures to a diffuse acoustic field. The structure is modeled with both a finite element 
method (FE) and a statistical energy analysis (SEA) approach. The surrounding acoustic fluid is 
modeled with boundary element analysis (BEM) and SEA. The following coupled models are 
considered: FE-BEM, Hybrid FE-SEA, and SEA. The predicted results are compared to 
experimental data. While all of the methods have their role, showing the comparing the methods 
across a broad frequency range provides insight into the strengths and weakness of the different 
methods. 
 
  
The results in this paper came from a collaboration by the author on a project that was managed 
by Prof. M. A. Hamdi. 
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ABSTRACT 
 

This presentation gives an overview of the main stages which contribute to the development of the 
Porous Elastic Module (PEM) in the RAYON solver, dedicated to the simulation of the Porous 
Elastic Media based on a mixed displacement–pressure(U,p) Formulation to solve modified Biot’s 
equations . This covers the academic aspects, such as the implementation of the (U,p) mixed 
formulation established in  early of year 2000, using  Mixed Finite Elements (MFE).  Some basic 
academic and industrial applications have been solved and experimentally validated in cooperation 
with academic and industrial partners proofing the validity of the results obtained with RAYON-
PEM Solver.  During the last 15 years, many projects with major automotive and aerospace 
partners enabled to transform this RAYON-PEM module in a robust standalone simulation tool, 
also called Vehicle Trim Modeler (VTM), capable to compute the vibro-acoustic response of  fully 
trimmed vehicles, but also the Transmission Loss (TL) of some  vehicle components. More recently, 
the RAYON-PEM module has been integrated in two other ESI-Group products (VA-One and 
Visual-VPS). It is now worldwide distributed and can be considered as a reference tool in the 
domain of the vibro-acoustic simulation for low and medium frequencies.. 
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ABSTRACT 

 
Metamaterials based on hexagonal periodic cells (honeycombs) have gained considerable attention 
in recent years. This can be an advanced material due to its capability of meeting high performance 
requirements in various critically desirable application-specific parameters [1]. These structural 
assemblies not only make an efficient use of material, but are also characterized by interesting 
dynamic and wave propagation properties. A semi-analytical formulation has been developed for 
wave propagation in irregular honeycombs. Spatial structural irregularity of hexagonal lattices 
has been considered. There are few scientific literatures available concerning analysis of wave 
propagation in regular honeycombs [2]. However, due to inevitable uncertainties associated with 
manufacturing and service conditions, honeycomb lattices may not be always perfectly regular. The 
effect of spatially random structural irregularity in wave velocities of such irregular honeycombs 
will be discussed. The nature of so called ‘pass band’ and ‘stop bands’ due to irregularities will be 
explained. 
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ABSTRACT 
 

In self-excited nonlinear oscillators subjected to harmonic forcing, frequency-locking can occur 
near strong resonances. This phenomenon results from synchronization between the frequency of 
the forcing and the frequency of the limit cycle oscillation leading to frequency-locked motions for 
which the response of the system follows the forcing frequency. 
In the case of 1:4 resonance, which is considered as one of the unsolved problem in nonlinear 
dynamics [1], the limit cycle loses its stability at the synchronization via heteroclinic bifurcation. 
Usually, the transition between quasi-periodic and synchronized motions occurs via heteroclinic 
connections at two different frequencies causing hysteresis and bistability. Therefore, analytical 
approximation of heteroclinic bifurcations near the 1:4 resonance is of great importance since they 
determine the locations at which the frequency-locked motion takes place. 
The existence of heteroclinic orbits in ordinary differential equations corresponds to the existence 
of coherent structures such as solitons and fronts in certain partial differential equations. For 
instance, they form the profiles of traveling wave solutions in reaction–diffusion problems and 
spatially localized post-buckling states in static dynamics. Also, heteroclinic orbits correspond to 
the onset of various types of synchronization in certain problems in physics and biology [2,3]. 
Therefore, one of the challenging problems is the analytical capture of the heteroclinic bifurcations 
location near the strong resonances [1].  To the best of our knowledge, rigorous analytical 
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expressions of heteroclinic bifurcation near these resonances have not been obtained, only 
numerical methods have been performed [4,5]. In this talk, recent analytical methods to capture 
approximation of such heteroclinic bifurcations in the problem of stability loss of limit cycle 
oscillations near the 1:4 resonance will be presented. The problem of 1:3 resonance will be also 
discussed. 
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ABSTRACT 

 
Computational analysis of the dynamics of railroad vehicles is becoming an essential tool for this 
industry. Vehicle designers, rolling stock manufactures and railroad administrations benefit from 
the special modeling tools provided by the different railroad multibody softwares that are present 
in the market. Railroad dynamics is nowadays a sub-field of multibody dynamics that is 
characterized by the use of special algorithms for the treatment of the track geometry and the wheel-
rail interaction. This presentation shows the theoretical foundations of these algorithms. Railroad 
vehicles have been traditionally designed using linearized equations that uncouple the longitudinal, 
lateral and vertical dynamics. Linear models can be used to find a first approximation of the 
response of the vehicle to the track geometric irregularities, the lateral stability or the curving 
behavior. Linear models are based on the kinematics of the conical wheels, linear creep wheel-rail 
forces and the vehicle is considered as a collection of rigid bodies connected by springs and 
dashpots. On the other hand, multibody models of the railroad vehicles and track take into account 
the complex wheel-rail contact geometry and their normal and tangential interaction forces. The 
railroad vehicle bodies are assumed to be connected by kinematic joints and the can be considered 
as deformable. These modeling capabilities provide a more detailed insight into the vehicle 
dynamics at the expense of much longer computational analysis. However, special techniques like 
the use of trajectory coordinates or contact lookup tables alleviate this problem without significant 
reduction in accuracy. This presentation shows the modelling keys for the real-time simulation of 
railway vehicles using multibody dynamics that can be used in on–board applications. 
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Guimarães Thiago, 117–121

Haddar Mohamed, 100–104
Hamdi Adel, 1–4
Hamdi Mohamed-Ali, 291–295
Hamdi Mustapha, 56–58
Hamdi, Mohamed-Ali, 301
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